• Ешқандай Нәтиже Табылған Жоқ

Anti-inflammatory and antioxidant activities of 4-allylpyrocatechol and its derivatives with molecular docking and ADMET investigations

N/A
N/A
Protected

Academic year: 2022

Share "Anti-inflammatory and antioxidant activities of 4-allylpyrocatechol and its derivatives with molecular docking and ADMET investigations"

Copied!
10
0
0

Толық мәтін

(1)

tions. Bulletin of the University of Karaganda – Chemistry, 105(1), 50-59. https://doi.org/10.31489/2022Ch1/50-59

PHYSICAL AND ANALYTICAL CHEMISTRY

Article

UDC 544.42+519.242.7 https://doi.org/10.31489/2022Ch1/50-59

T. Annavarapu1, S. Kamepalli1, S.K. Kondala2, V. Kotra3, S.R. Challa4, M. Rudrapal5*, A.R. Bendale6

1Acharya Nagarjuna University College of Pharmaceutical Sciences, Guntur, Andhra Pradesh, India;

2School of Pharmaceutical Sciences, Vignan’s Foundation for Science, Technology and Research, Guntur, Andhra Pradesh, India;

3Faculty of Pharmacy, Quest International University Perak (QIUP), Perak, Malaysia;

4Department of Cancer Biology and Pharmacology, College of Medicine, University of Illinois, Peoria, Illinois, USA;

5Rasiklal M. Dhariwal Institute of Pharmaceutical Education & Research, Pune, Maharashtra, India;

6Sandip Institute of Pharmaceutical Sciences, Nashik, Maharashtra, India (*Corresponding author’s e-mail: rsmrpal@gmail.com)

Anti-inflammatory and antioxidant activities of 4-allylpyrocatechol and its derivatives with molecular docking and ADMET investigations

Abnormal production of pro-inflammatory mediators and generation of reactive oxygen species (ROS) play a key role in the development and progression of various human disorders. The study aims to investigate the in vitro anti-inflammatory and antioxidant activity of 4-allyl pyrocatechol (4-APC) and its derivatives (APC-1 and APC-2) by albumin denaturation and 1,1-Diphenyl-2-picrylhydrazyl (DPPH) methods, respectively. Al- so, the test compounds are studied in silico for their inhibitory potential against the pro-inflammatory and ox- idative markers (calpain, FAAH, and TNF-α) via molecular docking. The compounds have exhibited appre- ciable in vitro anti-inflammatory and antioxidant activities. The APC-2 compound has demonstrated signifi- cant anti-inflammatory and antioxidant activity (percentage inhibition = 69±0.76 and 77.05±0.92, respective- ly, at 100 µg/ml) compared to the standard drugs, aspirin and ascorbic acid (percentage inhibition = 82±0.83 and 92.35±0.75, respectively, at 100 µg/ml). The docking study has showed that APC-2 significantly inhibit- ed calpain (PDB ID: 2R9C), FAAH (2WJ1) and TNF-α (2AZ5) inflammatory markers. The drug-likeness, bioactivities, ADME profile (pharmacokinetic) and toxicity properties have also been determined using online tools (Molinspiration, pkCSM, SwissADME, PreADMET). The test compounds have showed accepta- ble drug-likeness, bioactivity score, ADME and toxicity properties. Finally, we conclude that the 4- allylpyrocatechol and its derivativescan be used as lead molecules for their further development as therapeu- tically useful anti-inflammatory agents.

Keywords: pyrocatechol, anti-inflammatory, antioxidant, lead molecule, inflammatory markers, calpain, FAAH, TNF-α, docking, ADMET.

Introduction

Chronic anti-inflammatory diseases, including rheumatoid arthritis, are still one of the major health problems of the world’s population. Chronic inflammation may lead to considerable tissue damage in human diseases [1, 2]. Inflammation can cause damage to body tissues (endothelial cells, muscle cells, nerve cells) through the production of an array of pro-inflammatory and inflammatory mediators, such as prostaglandins (PGEs), interleukins (ILs), tumor necrosis factor-alpha (TNF), etc. [3]. The abnormal production of pro- inflammatory mediators and the generation of reactive oxygen species (ROS) play a key role in the devel- opment of inflammations and associated human illness [4, 5]. ROS are free oxygen radicals that can rapidly react with biological molecules (lipids, DNA, and proteins), resulting in oxidative stress (OS) and conse- quently cellular damage [6]. The production of free radicals and pro-inflammatory/ inflammatory mediators

Buketov

University

(2)

is believed to be the underlying cause of inflammatory diseases [6–9]. The anti-inflammatory, antioxidant, antimicrobial, antifungal activities of 4-allylpyrocatechol (APC) have already been reported [10, 11]. As continuation of our work [12], this work aims to study the anti-inflammatory and antioxidant activity of pre- viously synthesized 4-allylpyrocatechol and its derivatives by using in vitro methods. Further, molecular docking was carried out by in silico method to investigate the inhibitory potential of test compounds against oxidative (calpain), fatty acid amide hydrolase (FAAH), and pro-inflammatory (TNF-α) markers. To evalu- ate the overall drug-likeness, drug-likeness parameters, bioactivities, ADME profile (pharmacokinetic) and toxicity properties were also determined using online tools.

Experimental

Chemicals: 1,1-Diphenyl-2-picrylhydrazyl (DPPH), DMSO, ethanol, ascorbic acid, bovine albumin were purchased from National Scientific Products, Guntur, A.P. India. All other chemical reagents and chemicals used were of analytical grade.

In vitro anti-inflammatory activity: The protein denaturation method was used to determine the anti- inflammatory activity of the synthesized molecules according to the previously reported technique [8] with some minor modifications. The final volume of the reaction mixture was 5 ml and comprised 0.2 ml bovine albumin (1 %), 0.70 ml phosphate buffer saline (PBS, pH 6.4), and 0.1 ml test compound (sample). The pH was adjusted to 1N HCl. The reaction mixture was incubated in water bath for 15 min at 37 °C, and then it was heated to 70 °C for 5 min. The absorbance of the turbid solution was determined at 660 nm by using a UV-Visible Spectrophotometer (Elico, India). The phosphate buffer was used as a control, and aspirin was used as a standard reference drug. The percentage inhibition of protein denature was calculated using the fol- lowing formula:

Percentage inhibition of denaturation = ([1 – (As/Ac)] × 100), where Ac — the absorbance of a control; As — the absorbance of a sample.

In vitro antioxidant activity: The antioxidant activity was assessed by DPPH radical scavenging assay according to the previously published method [13] with some modifications. The 1 mg/ml stock solution was prepared by mixing the test compound using DMSO as a solvent. The DPPH radical solution (0.5 mM) was prepared using ethanol. The stock solution was used to prepare different concentrations (100 µg/ml, 50 µg/ml, and 25µg/ml) of the test compound with DMSO. The standard solution of ascorbic acid was also pre- pared in the same way as mentioned above. The different final test solutions consisted of 0.5 ml sample solu- tion, 3 ml absolute ethanol and 0.3 ml 0.5 mM DPPH solution in ethanol. The blank consisted of 3.3 ml eth- anol and 0.5 ml sample solution. The control solution was prepared by mixing 3.5 ml ethanol and 0.3 ml DPPH solution. Test solutions were incubated for 30 min at room temperature. The change in color (from deep violet to light yellow) was measured at 517 nm using a UV-Visible Spectrophotometer against the blank. The radical scavenging activity was measured in percentage using the following formula:

Percentage of scavenging activity = ([1 – (Abs/Abc)] × 100), where Abc — the absorbance of a control; Abs — the absorbance of a sample.

Statistical analysis: The statistical analysis was performed using GraphPad Prism 8.0, and values were expressed in mean ± SEM. The statistical comparison was made using ANOVA, where p < 0.05 was consid- ered statistically significant.

Molecular docking study: The docking study was performed for 4-allyl pyrocatechol (4-APC) and its two derivatives, APC-1 and APC-2, against the oxidative and pro-inflammatory markers such as calpain, FAAH, and TNF-α. The protein-ligand docking was conducted in PyRx Virtual Screening software 0.8 [14–16].

The X-ray crystal structures of calpain (PDB ID: 2R9C), FAAH (PDB ID: 2WJ1, FAAH) and TNF-α (PDB ID: 2AZ5) were retrieved from Protein Data Bank [17–20]. The water molecules were removed, hy- drogen atoms were added, and co-crystal ligands were extracted using PyMOL 2.3.4 and saved in .mol2 format. The mol2 file of protein was loaded converted to .pdbqt format through AutoDock module Macro- molecule tool in PyRx Virtual Screening software 0.8.

The 2D structures of ligands (4-APC, APC-1, and APC-2), which were previously characterized by

1H-NMR, 13C-NMR, and high-resolution mass spectrophotometry [12], were drawn using ChemSketch v14.00 and saved as .sdf file. The ligand files were subjected to energy minimization (force filed-off) through the Open babel tool and then conformers for the selected ligands were generated through AutoDock .pdbqt files in PyRx Virtual screening software 0.8. The 2D structures of 4-APC and its derivatives (APC-1 and APC-2) are presented in Figure 1.

Buketov

University

(3)

Figure 1. Structures of 4-APC and its derivatives (APC-1 and APC-2)

Drug-likeness, bioactivities, ADME and toxicity prediction: The 2D structures of 4-APC, APC-1, and APC-2 were used for assessing drug-likeness, bioactivities, ADME and toxicity properties [21–23]. Various online tools such as Molinspiration, pkCSM, SwissADME and PreADMET [24, 25] were used to calculate the abovementioned properties.

Results and Discussion

Anti-inflammatory activity: The results of in vitro anti-inflammatory activity of the test compounds are shown in Figure 2. The compound APC-2 showed maximum inhibitory activity of 69±0.76 % at 100 µg/ml.

The standard anti-inflammatory drug aspirin exhibited 74±0.83 % inhibition of protein denaturation at 100 µg/ml. The other two compounds, 4-APC and APC-1 also exhibited anti-inflammatory activity with 47±0.96 % and 56±0.45 % inhibition of protein denaturation at 100 µg/ml, respectively.

Antioxidant activity: Figure 3 presents the results of in vitro antioxidant activity. Test compounds, 4- APC, APC-1, and APC-2 showed significant DPPH radical scavenging activity compared with the standard drug, ascorbic acid. The decrease in absorbance of DPPH radicals was observed with increase in the concen- tration of test compounds due to the scavenging of radicals by hydrogen donation. This was easily observed with change in color from purple to yellow. Among the test samples, APC-2 exhibited a significant percent- age inhibition (77.05±0.92 %, 100 µg/ml) compared with standard ascorbic acid (92.35±0.75 %, 100 ug/ml).

The other two compounds (4-APC and APC-1) showed considerable DPPH radical scavenging activity.

Figure 2. Protein denaturation activity of 4-APC and its derivatives (APC-1 and APC-2)

Figure 3. DPPH radical scavenging activity of 4-APC and its derivatives (APC-1 and APC-2) Docking study: A molecular docking study substantiated the anti-inflammatory and antioxidant activi- ties of 4-APC, APC-1, and APC-2. Three oxidative and pro-inflammatory markers, such as calpain, FAAH, and TNF-α, were used as target proteins in the docking study. Results of protein-ligand docking are ex- pressed as binding energies (kcal/mol) of protein-ligand interaction and are presented in Tables 1, 2, 3. From docking results, the compound APC-2 showed the lowest binding energies against all three different pro- teins. The other two compounds (4-APC and APC-1) exhibited comparatively more binding energies than the compound APC-2. However, the binding energies of internal ligands (co-crystal ligands) were found over the test compounds. From binding energies, it is clear that APC-2 possesses more binding affinity than

Buketov

University

(4)

the other two compounds (4-APC and APC-1) against all the three target proteins (calpain, FAAH, and TNF-α).

T a b l e 1 Binding energies and interacting amino acids of 4-APC, APC-1, and APC-2 against calpain

Sl. No. Compound Binding energy

(kcal/mol) Interaction(s) Interacting amino acids

1 4-APC -4.7 H bond

pi-alkyl

Gly110 Trp298, Val301

2 APC-1 -5.8 H bond Ser251, Glu349

3 APC-2 -6.8 H bond

pi-alkyl

Arg270, His272, Glu300 Ala262

4 Internal ligand

(GRD) -8.2 H bond Glu109, Leu112, Cys115, Gly208,

Thr210, Trp298, Glu349

T a b l e 2 Binding energies and interacting amino acids of 4-APC, APC-1, and APC-2 against FAAH

Sl. No. Compound Binding energy

(kcal/mol) Interaction(s) Interacting amino acids

1 4-APC -6.5 pi-sigma

Pi-alkyl

Phe192 Ser193

2 APC-1 -8.6 H bond

pi-alkyl

Tyr194, Gly216, Ser241, Leu404, Val491

3 APC-2 -9.1

H bond pi-sigma

pi-alkyl

Lys142, Thr236, Ser241, Gln273 Ile238, Met191

Val270, Leu278 4 Internal ligand

(S99) -8.6

H bond pi-sigma

pi-alkyl

Cys269, Val270 Ile238 Leu278, Leu380

T a b l e 3 Binding energies and interacting amino acids of 4-APC, APC-1, and APC-2 against TNF-α

Sl. No. Compound Binding energy

(kcal/mol) Interaction(s) Interacting amino acids

1 4-APC -4.7

H bond pi-alkyl pi-pi staking

Leu120, Gly121 Ile155 Tyr59

2 APC-1 -5.6

H bond pi-alkyl pi-pi staking

Ser60, Leu120 Leu57 Tyr59

3 APC-2 -6.6

H bond pi-alkyl pi-pi stacking

Gln61 His15, Tyr59, Tyr151

Tyr59, Tyr119 4 Internal ligand

(307) -6.8

H-bond pi-alkyl pi- pi staking

Lue120 Gln61, Tyr119 Tyr59, Tyr119, Tyr151

Upon analysis of protein-ligand interactions, various non-bonding interactions exist between ligands (4-APC, APC-1, and APC-2) and proteins (calpain, FAAH, and TNF-α). Non-bonding interactions like H bond, pi-alkyl and pi-pi staking are involved between ligand and protein molecules. Various amino acid residues, such as Tyr59, Ser60, Gln61, Tyr119, Leu120, Gly121, Ile155, Tyr194, Gly216, Ser241, Leu404, Val491, and so on, are involved in the interactions from the active binding sites of calpain, FAAH, and

Buketov

University

(5)

TNF-α. Binding poses (3D) and protein-ligand interaction diagrams (2D) of protein-ligand are presented in Figures 4, 5, 6.

a — 4-APC; b — APC-1; c — APC-2; d — internal ligand (GRD)

Figure 4. Binding poses (3D) and interaction diagrams (2D) of protein-ligand docking against calpain

a — 4-APC; b — APC-1; c — APC-2; d — internal ligand (S99)

Figure 5. Binding poses (3D) and interaction diagrams (2D) of protein-ligand docking against FAAH

Drug-likeness, bioactivities, ADME and toxicity profile: The results of drug-likeness, bioactivities, ADME and toxicity profile are given in Tables 4, 5, 6 and 7. Three compounds, such as 4-APC, APC-1, and APC-2, possess acceptable drug-likeness parameters (molecular weight, LogP, H bond acceptors, H bond donors etc.), bioactivities (GPCR ligand, ion channel modulator, kinase inhibitor, nuclear receptor ligand, protease or enzyme inhibitor etc.), pharmacokinetics (ADME), and toxic properties. All the compounds were found to be drug-like molecules, biologically active, water/lipid soluble, non-toxic or non-mutagenic.

Buketov

University

(6)

a — 4-APC; b — APC-1; c — APC-2; d — internal ligand (307)

Figure 6. Binding poses (3D) and interaction diagrams (2D) of protein-ligand docking against TNF-α

T a b l e 4 Predicted drug-likeliness properties of 4-APC, APC-1, and APC-2

Sl. No. Descriptor 4-APC APC-1 APC-2

1 Molecular weight 150.177 227.263 277.323

2 LogP 1.8263 2.7487 3.9019

3 H bond acceptors 2 3 3

4 H bond donors 2 2 3

5 Surface area 65.425 99.702 122.384

T a b l e 5 Predicted Bioactivity of 4-APC, APC-1, and APC-2

Sl. No. Bioactivity Bioactivity score

4-APC APC-1 APC-2

1 GPCR ligand -0.88 0.11 0.28

2 Ion channel modulator -0.28 0.33 0.25

3 Kinase inhibitor -1.26 -0.04 0.18

4 Nuclear receptor ligand -0.76 0.06 0.31

5 Protease inhibitor -1.28 -0.48 -0.12

6 Enzyme inhibitor -0.40 0.30 0.31

T a b l e 6 Predicted ADME profile of 4-APC, APC-1, and APC-2

Parameter ADME properties 4-APC APC-1 APC-2

1 2 3 4 5

Absorption Water solubility (log mol/L) -0.974 -2.511 -4.428

Caco2 permeability (log Papp in 10-6 cm/s) 1.596 1.298 1.342 Intestinal absorption (human) (% Absorbed) 90.171 91.252 92.235

Skin permeability (log Kp) -2.278 -2.612 -2.766

P-glycoprotein substrate (Yes/No) No Yes Yes

P-glycoprotein I inhibitor (Yes/No) No No No

Buketov

University

(7)

C o n t i n u a t i o n o f T a b l e 6

1 2 3 4 5

P-glycoprotein II inhibitor (Yes/No) No No No

Distribution VDss (human) (log L/kg) 0.31 0.196 0.133

Fraction unbound (human) (Fu) 0.448 0.198 0.033

BBB permeability (log BB) 0.166 0.118 0.057

CNS permeability (log PS) -2.075 -2.164 -1.864

Metabolism CYP2D6 substrate (Yes/No) No No No

CYP3A4 substrate (Yes/No) No Yes Yes

CYP1A2 inhibitor (Yes/No) Yes Yes Yes

CYP2C19 inhibition(Yes/No) No Yes Yes

CYP2C9 inhibitor (Yes/No) No No Yes

CYP2D6 inhibitor (Yes/No) No No No

CYP3A4 inhibitor (Yes/No) No No Yes

Excretion Total clearance (log ml/min/kg 0.214 0.175 0.164

Renal OCT2 substrate (Yes/No) No No No

T a b l e 7 Predicted drug toxicity for 4-APC, APC-1, and APC-2

Sl. No. Toxicity parameter 4-APC APC-1 APC-2

1 AMES toxicity Yes Yes No

2 Max. tolerated dose (human) (log mg/kg/day) 0.696 0.484 0.049

3 hERG I inhibitor No No No

4 hERG II inhibitor No No Yes

5 Oral rat acute toxicity (LD50) (mol/kg) 2.079 2.021 2.082

6 Oral rat chronic toxicity (log mg/kg_bw/day) 2.204 1.721 1.795

7 Hepatotoxicity No No Yes

8 Skin sensitisation Yes No No

9 Tetrahymena pyriformis toxicity (log ug/L) 0.166 1.211 1.067

10 Minnow toxicity (log mM) 1.724 1.062 -0.114

11 Acute algae toxicity 0.05680 0.06064 0.02052

12 2 years carcinogenicity bioassay in mouse Positive Negative Negative 13 2 years carcinogenicity bioassay in rat Negative Negative Negative

14 Acute daphnia toxicity 0.12609 0.16367 0.04595

15 In vitro Human ether-a-go-go related gene channel inhibi- tion

Medium Risk Medium Risk Medium Risk

16 Acute fish toxicity (medaka) 0.02144 0.03946 0.00407

17 Acute fish toxicity (minnow) 0.01102 0.03670 0.00812

18 In vitro Ames test results in TA100 strain (Metabolic ac- tivation by rat liver homogenate)

Negative Positive Positive 19 In vitro Ames test results in TA100 strain (No metabolic

activation)

Negative Negative Negative 20 In vitro Ames test results in TA1535 strain (Metabolic

activation by rat liver homogenate)

Positive Positive Negative 21 In vitro Ames test results in TA1535 strain (No metabolic

activation)

Positive Positive Negative

Conclusions

In conclusion, we conclude that the pyrocatechol and its derivatives possess appreciable in vitro anti- inflammatory and antioxidant activities. The pyrocatechol derivative 2 (APC‑2) has a better activity profile among the three compounds. The in silico studies revealed a significant inhibitory potential of the com- pounds, especially the compound APC-2, against the oxidative and pro-inflammatory markers with an ac- ceptable level of drug-likeness, ADME profile, and toxicities. Finally, it was suggested that the 4-allylpyrocatechol and its derivatives can be used as lead molecules for their further development as thera- peutically useful anti-inflammatory agents.

Buketov

University

(8)

References

1 Hussain, N., Kakoti, B.B., Rudrapal, M., & Sarwa, K.K. (2020). Anti-inflammatory and Antioxidant Activities of Cordia dichotoma Forst. Bark. Biomedicine and Pharmacology Journal, 13(4), 2093–2099. https://dx.doi.org/10.13005/bpj/2090

2 Junejo, J.A., Zaman, K., & Rudrapal, M. (2022). Hepatoprotective and Anti-inflammatory Activities of Hydro-alcoholic Ex- tract of Oxalis debilis Kunth. Leaves Letters in Applied NanoBioScience, 11(3), 3626–3633.

https://dx.doi.org/10.33263/LIANBS113.36263633

3 Jongejan, A., de Graaf, C., Vermeulen, N.P., Leurs, R., & de Esch, I.J. (2005). The role and application of in silico docking in chemical genomics research. Methods in Molecular Biology, 310, 63–91. https://dx.doi.org/10.1007/978-1-59259-948-6_5

4 Morphy, R., Kay, C., & Rankovic, Z. (2004). From magic bullets to designed multiple ligands. Drug discovery today, 9(15), 641–651. https://dx.doi.org/10.1016/S1359-6446(04)03163-0

5 Sharom, J.R., Bellows, D.S., & Tyers, M. (2004). From large networks to small molecules. Current Opinion in Chemical Bi- ology, 8(1), 81–90. https://dx.doi.org/10.1016/j.cbpa.2003.12.007

6 Ekins, S., Mestres, J., & Testa, B. (2007). In silico pharmacology for drug discovery: applications to targets and be- yond. British Journal of Pharmacology, 152(1), 21–37. https://dx.doi.org/10.1038/sj.bjp.0707306

7 Jeong, D., Yang, W.S., Yang, Y., Nam, G., Kim, J.H., & Yoon, D.H. et al. (2013). In vitro and in vivo anti-inflammatory ef- fect of Rhodomyrtus tomentosa methanol extract. Journal of Ethnopharmacology, 146(1), 205–213.

https://dx.doi.org/10.1016/j.jep.2012.12.034

8 Wang, Q., Kuang, H., Su, Y., Sun, Y., Feng, J., Guo, R., & Chan, K. (2013). Naturally derived anti-inflammatory compounds from Chinese medicinal plants. Journal of Ethnopharmacology, 146(1), 9–39. https://dx.doi.org/10.1016/j.jep.2012.12.013

9 Lushchak V.I. (2014). Free radicals, reactive oxygen species, oxidative stress and its classification. Chemico-biological Interactions, 224, 164–175. https://dx.doi.org/10.1016/j.cbi.2014.10.016

10 Rathee, J.S., Patro, B.S., Mula, S., Gamre, S., Chattopadhyay, S. (2006). Antioxidant activity of piper betel leaf extract and its constituents. Journal of Agricultural and Food Chemistry, 54(24), 9046–9054. https://doi.org/10.1021/jf061679e

11 Sarkar, D., Saha, P., Gamre, S., Bhattacharjee, S., Hariharan, C., & Ganguly, S. et al. (2008). Anti-infammatory efect of al- lylpyrocatechol in LPS-induced macrophages is mediated by suppression of iNOS and COX-2 via the NF-kappaB pathway.

International Immunopharmacology, 8(9), 1264–1271. https://doi.org/10.1016/j.intimp.2008.05.003

12 Annavarapu, T.R., Kamepalli, S., Kotra, V., & Rao, V.G. (2021). Neuroprotective Propensity of 4-Allylpyrocatechol Deriva- tives against Oxaliplatin Induced Peripheral Neuropathy. Journal of Pharmaceutical Research International, 33(24A), 92–100.

https://dx.doi.org/10.9734/jpri/2021/v33i24A31436

13 Salla, S., Sunkara, R., Ogutu, S., Walker, L.T. and Verghese, M. (2016) Antioxidant Activity of Papaya Seed Extracts against H2O2 Induced Oxidative Stress in HepG2 Cells. LWT—Food Science and Technology, 66, 293–297.

http://dx.doi.org/10.1016/j.lwt.2015.09.008

14 Kumar, P., Choonara, Y.E., & Pillay, V. (2014). In silico affinity profiling of neuroactive polyphenols for post-traumatic cal- pain inactivation: a molecular docking and atomistic simulation sensitivity analysis. Molecules, 20(1), 135–168.

https://doi.org/10.3390/molecules20010135

15 Criscuolo, E., De Sciscio, M.L., Fezza, F., & Maccarrone, M. (2020). In Silico and In Vitro Analysis of Major Cannabis- Derived Compounds as Fatty Acid Amide Hydrolase Inhibitors. Molecules, 26(1), 48. https://doi.org/10.3390/molecules26010048

16 Saddala, M.S., Huang, H. (2019). Identification of novel inhibitors for TNFα, TNFR1 and TNFα-TNFR1 complex using pharmacophore-based approaches. Journal of Tranlational Medicine, 17, 215. https://doi.org/10.1186/s12967-019-1965-5

17 Rathinavel, T., Ammashi, S., & Shanmugam, G. (2021). Analgesic and anti-inflammatory potential of Lupeol isolated from Indian traditional medicinal plant Crateva adansonii screened through in vivo and in silico approaches. Journal of Genetic Engineering & Biotechnology, 19(1), 62. https://doi.org/10.1186/s43141-021-00167-6

18 Pires, D.E., Blundell, T.L., & Ascher, D.B. (2015). pkCSM: Predicting Small-Molecule Pharmacokinetic and Toxicity Prop- erties Using Graph-Based Signatures. Journal of Medicinal Chemistry, 58(9), 4066–4072 https://doi.org/10.1021/acs.jmedchem.5b00104

19 Han, Y., Zhang, J., Hu, C. Q., Zhang, X., Ma, B., & Zhang, P. (2019). In silico ADME and Toxicity Prediction of Ceftazidime and Its Impurities. Frontiers in Pharmacology, 10, 434. https://doi.org/10.3389/fphar.2019.00434

20 Brand-Williams, W., Cuvelier, M.E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. Food Science and Technology, 28(1), 25–30. https://doi.org/10.1016/S0023-6438(95)80008-5

21 Mandal, G., Chatterjee, C., & Chatterjee, M. (2015). Evaluation of anti-inflammatory activity of methanolic extract of leaves of Bougainvillea spectabilis in experimental animal models. Pharmacognosy Research, 7(1), 18–22. https://doi.org/10.4103/0974- 8490.147194

22 Ghosh, S., Chetia, D., Gogoi, N., & Rudrapal, M. (2021). Design, Molecular Docking, Drug-likeness and Molecular Dynam- ics Studies of 1,2,4-Trioxane Derivatives as Novel P. falciparum Falcipain-2 (FP-2) Inhibitors. Biotechnologia, 102(3), 257-275.

https://doi.org/10.5114/bta.2021.108722

23 Rudrapal, M., Rashid, I.A., Agoni, C., Bendale, A.R., Nagar, A., Soliman, M.E.S., & Lokwani, D. (2021). In Silico screening of phytopolyphenolics for the identification of bioactive compounds as novel protease inhibitors effective against SARS-CoV-2.

Journal of Biomolecular Structure and Dynamics. https://doi.org/10.1080/07391102.2021.1944909

Buketov

University

(9)

24 Othman, I.M.M., Mahross, M.H., Gad-Elkareem, M.A.M., Rudrapal, M., Gogoi, N., & Chetia, D., et al. (2021). Toward a treatment of antibacterial and antifungal infections: Design, synthesis and in vitro activity of novel arylhydrazothiazolylsulphona- mide analogues and their insight of DFT, docking and molecular dynamics simulations. Journal of Molecular Structure, 1243, 130862. https://doi.org/10.1016/j.molstruc.2021.130862

25 Hussain, N., Kakoti, B.B., Rudrapal, M., Sarwa, K.K., Celik, I., & Attah, E.I. et al. (2021). Bioactive Antidiabetic Flavonoids from the Stem Bark of Cordia dichotoma Forst.: Identification, Docking and ADMET Studies. Molbank, 2021, M1234.

https://doi.org/10.3390/M1234

Т. Аннаварапу, С. Камепалли, С.К. Кондала, В. Котра, С.Р. Чалла, М. Рудрапал, А.Р. Бендейл

4-Аллилпирокатехиннің қабынуға қарсы және антиоксиданттық белсенділігін және оның туындыларын молекулалық

докинг пен ADMET арқылы зерттеу

Қабынуға қарсы медиаторлардың аномальды өнімдері және оттегінің белсенді түрлерінің генерациясы (ОБТ) адамның әртүрлі ауруларының дамуы мен өршуінде шешуші рөл атқарады. Осы зерттеудің мақсаты альбумин денатурациясы мен DPPH (1,1-дифенил-2-пикрилгидразил) әдісі арқылы 4-аллилпиратехиннің (4-АРС) және оның туындыларының (АРС-1 және АРС-2) қабынуғақарсы және антиоксиданттық белсенділігін in vitro зерттеу. Сонымен қатар, сыналған қосылыстар in silico-да қабынуғақарсы және тотықтырғыш маркерлерге (кальпаин, FAAH және TNF-α) қатысты ингибиторлық потенциалы үшін молекулалық докинг әдісімен зерттелді. Қосылыстар in vitro жағдайында қабынуғақарсы және антиоксиданттық айқын белсенділікті көрсетті. APC-2 қосындысы аспирин және аскорбин қышқылы сияқты стандартты препараттармен салыстырғанда (пайыздық тежелу = 100 мкг/мл кезінде сәйкесінше 82±0,83 және 92,35±0,75) айтарлықтай қабынуғақарсы және антиоксиданттық белсенділікті көрсетті (пайыздық тежелу = 100 мкг/мл кезінде сәйкесінше 69 ± 0,76 және 77,05 ± 0,92). Молекулалық докинг әдісі APC-2 кальпаиннің қабыну белгілерін (PDB ID: 2R9C), FAAH (2WJ1) және TNF-α (2AZ5) айтарлықтай тежейтінін көрсетті. Онлайн құралдардың көмегімен (Molinspiration, pkCSM, Swiss ADME, PreADMET) дәрілік заттардың ұқсастығы, биологиялық белсенділігінің көрсеткіші, ADME профилі (фармакокинетикасы) және уыттылық қасиеттері сияқты параметрлер анықталды. Сонымен қатар, сыналған қосылыстар дәріге жақын ұқсастығын, биологиялық белсенділік көрсеткішін, ADME қасиеттерін және уыттылық қасиеттерін көрсеткен.

Қорытындыда 4-аллилпирокатехин және оның туындыларын терапевтік пайдалы қабынуғақарсы құрал ретінде одан әрі дамыту үшін жетекші молекула ретінде пайдалануға болады деген тұжырым жасалған.

Кілт сөздер: пирокатехин, қабынуғақарсы әрекет, антиоксидант, қорғасын молекуласы, қабыну маркерлері, калпайн, FAAH, TNF-α, докинг, ADMET.

Т. Аннаварапу, С. Камепалли, С.К. Кондала, В. Котра, С.Р. Чалла, М. Рудрапал, А.Р. Бендейл

Исследование противовоспалительной и антиоксидантной активности 4-аллилпирокатехина и его производных методами

молекулярного докинга и ADMET

Аномальная продукция провоспалительных медиаторов и генерация активных форм кислорода (АФК) играют ключевую роль в развитии и прогрессировании различных заболеваний человека. Целью настоящего исследования было изучение in vitro противовоспалительной и антиоксидантной активно- сти 4-аллилпирокатехина (4-АРС) и его производных (АРС-1 и АРС-2) путем денатурации альбумина и DPPH (1,1-дифенил-2-пикрилгидразил) методом. Тестируемые соединения также были изучены in silico на предмет их ингибирующего потенциала в отношении провоспалительных и окислительных маркеров (кальпаин, FAAH и TNF-α) методом молекулярного докинга. Соединения показали in vitro заметную противовоспалительную и антиоксидантную активность. Соединение АРС-2 продемонстри- ровало значительную противовоспалительную и антиоксидантную активность (процентное ингибиро- вание = 69±0,76 и 77,05±0,92 соответственно при 100 мкг/мл) по сравнению с такими стандартными препаратами, как аспирин и аскорбиновая кислота (процентное ингибирование = 82±0,83 и 92,35±0,75 соответственно при 100 мкг/мл). Методом молекулярного докинга было показано, что APC-2 значи- тельно ингибирует воспалительные маркеры кальпаина (PDB ID: 2R9C), FAAH (2WJ1) и TNF-α (2AZ5). С помощью онлайн-инструментов (Molinspiration, pkCSM, Swiss ADME, PreADMET) также

Buketov

University

(10)

были определены такие параметры, как сходство с лекарством, биологическая активность, ADME профиль (фармакокинетика) и свойства токсичности. Испытываемые соединения показали приемле- мое сходство с лекарством, показатель биологической активности, ADME свойства и свойства ток- сичности. В заключение был сделан вывод, что 4-аллилпирокатехин и его производные могут быть использованы в качестве ведущих молекул для их дальнейшего развития в качестве терапевтически полезных противовоспалительных средств.

Ключевые слова: пирокатехин, противовоспалительное действие, антиоксидант, молекула свинца, маркеры воспаления, кальпаин, FAAH, TNF-α, докинг, ADMET.

Information about authors

Annavarapu, Tirupathirao — Research Scholar, Acharya Nagarjuna University College of Pharma- ceutical Sciences, Guntur-522508, Andhra Pradesh, India; e-mail: tirupathionline@gmail.com;

https://orcid.org/0000-0001-5311-689X;

Kamepalli, Sujana — Assistant Professor, Acharya Nagarjuna University College of Pharmaceutical Sciences, Guntur-522508, Andhra Pradesh, India; e-mail: drksujana36@gmail.com;

Kondala, Sathish Kumar — Assistant Professor, School of Pharmaceutical Sciences, Vignan’s Foun- dation for Science, Technology and Research, Guntur-522213, Andhra Pradesh, India; e-mail: sathishkonida- la@gmail.com; https://orcid.org/0000-0002-8250-3570;

Kotra, Vijay — Associate Professor, Faculty of Pharmacy, Quest International University Perak (QIUP), Perak, Malaysia; e-mail: vijai.kotra@gmail.com; https://orcid.org/0000-0002-2043-4928;

Challa, Siva Reddy — Research Collaborator, Department of Cancer Biology and Pharmacology, Col- lege of Medicine, University of Illinois, Peoria-61605, Illinois, USA; e-mail: sivareddypharma@gmail.com;

https://orcid.org/0000-0003-0487-2757;

Rudrapal, Mithun (corresponding author) — Associate Professor and HoD, Department of Pharma- ceutical Chemistry, Rasiklal M. Dhariwal Institute of Pharmaceutical Education & Research, Pune-411019, Maharashtra, India; email: rsmrpal@gmail.com; https://orcid.org/0000-0002-8172-6633;

Bendale, Atul R. — Associate Professor, Sandip Institute of Pharmaceutical Sciences, Nashik-422213, Maharashtra, India; e-mail: atulbendale123@gmail.com; https://orcid.org/0000-0002-3219-0377

Buketov

University

Ақпарат көздері

СӘЙКЕС КЕЛЕТІН ҚҰЖАТТАР

В Республике Казахстан, в отличие от Российской Федерации, где нет органа управления государственной службой, в соответ- ствии с Указом Президента от 18 сентября

Суэц каналының жаңа арнасының құрылысы арқылы Мысыр Таяу Шығыс және Солтүстік Африкадағы негізгі көліктік торап көзіне ие бола отырып, негізгі

Аңдатпа. Бүгінгі таңда саяси коммуникация, қоғамдық пікір терминдері саясаттану ғылымының өзегі деуге болады. Мақалада саяси коммуникация, қоғамдық пікір, қоғам-

An author who wishes to publish an article in a journal must submit the article in hard copy (printed version) in one copy, signed by the author to the scientific publication

Key words: Achillea micrantha, essential oil, GC/MS, antimicrobial, antifungal, antimalarial, cytotoxic, anti- radical and anti-tuberculosis activities, Artemia salina,

To study the structure and properties of glycoluril, various spectral analysis methods are used: spectroscopy in the ultraviolet (UV), visible, and infrared (IR) regions,

The analysis of CS in the NMR spectra of glycoluril 1 and its derivatives 2–13 (86 compounds in total) makes it possible to accurately identify the spatial symmetry configurations

Bioscreening (investigation of the anti-infl ammatory activity) of 20-hydroxyecdysone triacetate 1 and its complex with β-cyclodextrin 3 revealed anti-infl ammatory activity