• Ешқандай Нәтиже Табылған Жоқ

(1)(2)ISSN 2663–5011(Online) Индексi 74618 Индекс 74618 ҚАРАҒАНДЫ УНИВЕРСИТЕТIНIҢ ХАБАРШЫСЫ ВЕСТНИК КАРАГАНДИНСКОГО УНИВЕРСИТЕТА BULLETIN OF THE KARAGANDA UNIVERSITY МАТЕМАТИКА сериясы Серия МАТЕМАТИКА MATHEMATICS Series Сәуiр–мамыр–маусым 30 маусым 2021

N/A
N/A
Protected

Academic year: 2022

Share "(1)(2)ISSN 2663–5011(Online) Индексi 74618 Индекс 74618 ҚАРАҒАНДЫ УНИВЕРСИТЕТIНIҢ ХАБАРШЫСЫ ВЕСТНИК КАРАГАНДИНСКОГО УНИВЕРСИТЕТА BULLETIN OF THE KARAGANDA UNIVERSITY МАТЕМАТИКА сериясы Серия МАТЕМАТИКА MATHEMATICS Series Сәуiр–мамыр–маусым 30 маусым 2021 "

Copied!
156
0
0

Толық мәтін

(1)
(2)

ISSN 2663–5011(Online)

Индексi 74618

Индекс 74618

ҚАРАҒАНДЫ

УНИВЕРСИТЕТIНIҢ

ХАБАРШЫСЫ

ВЕСТНИК

КАРАГАНДИНСКОГО УНИВЕРСИТЕТА

BULLETIN

OF THE KARAGANDA UNIVERSITY

МАТЕМАТИКА сериясы Серия МАТЕМАТИКА

MATHEMATICS Series

№ 2(102)/2021

Сәуiр–мамыр–маусым 30 маусым 2021 ж.

Апрель–май–июнь 30 июня 2021 г.

April–May–June June, 30

th

, 2021

1996 жылдан бастап шығады Издается с 1996 года

Founded in 1996 Жылына 4 рет шығады

Выходит 4 раза в год Published 4 times a year

Қарағанды, 2021

Караганда, 2021

Karaganda 2021

(3)

Candidate of Physics and Mathematics sciences

N.T. Orumbayeva

Responsible secretary PhD

O.I. Ulbrikht Editorial board

A. Ashyralyev, M.A. Sadybekov, M. Otelbayev, B.R. Rakishev, U.U. Umirbaev, A.A. Shkalikov, G. Akishev, A.T. Assanova, T. Bekjan, N.A. Bokaev, K.T. Iskakov, M.T. Jenaliyev, M.T. Kosmakova L.K. Kusainova, A.S. Morozov, E.D. Nursultanov, B. Poizat,

M.I. Ramazanov, E.S. Smailov, A.R. Yeshkeyev,

Guest editor, Professor, Dr. phys.-math. sciences, Near East University, Nicosia, TRNC, Mersin 10 (Turkey);

Guest editor, Corresponding member of NAS RK, Professor, Dr. of phys.-math. sciences, IMMM, Almaty (Kazakhstan);

Academician of NAS RK, Professor, Dr. phys.-math. sciences, Gumilyov ENU, Nur-Sultan (Kazakhstan);

Academician of NAS RK, Professor, Dr. techn. sciences, Satbayev University, Almaty (Kazakhstan);

Academician of NAS RK, Professor, Dr. phys.-math. sciences, IMMM, Almaty (Kazakhstan);

Corresponding member of RAS RF, Professor, Dr. phys.-math. sciences, Lomonosov Moscow State University, Moscow (Russia);

Professor, Dr. phys.-math. sciences, Gumilyov ENU, Nur-Sultan (Kazakhstan);

Professor, Dr. phys.-math. sciences, IMMM, Almaty (Kazakhstan);

Professor, Xinjiang University, Urumchi (China);

Professor, Dr. phys.-math. sciences, Gumilyov ENU, Nur-Sultan (Kazakhstan);

Professor, Dr. phys.-math. sciences, Gumilyov ENU, Nur-Sultan (Kazakhstan);

Professor, Dr. phys.-math. sciences, IMMM, Almaty (Kazakhstan);

PhD, Buketov KU, Karaganda (Kazakhstan);

Professor, Dr. phys.-math. sciences, Gumilyov ENU, Nur-Sultan (Kazakhstan);

Professor, Dr. phys.-math. sciences, Sobolev Institute of Mathematics, Novosibirsk (Russia);

Professor, Dr. phys.-math. sciences, KB Lomonosov MSU, Nur-Sultan (Kazakhstan);

Professor, Universite Claude Bernard Lyon-1, Villeurbanne (France);

Professor, Dr. phys.-math. sciences, Buketov KU, Karaganda (Kazakhstan);

Professor, Dr. phys.-math. sciences, IMMM, Almaty (Kazakhstan);

Professor, Dr. phys.-math. sciences, Buketov KU, Karaganda (Kazakhstan)

Postal address: 28, University Str., Karaganda, 100024, Kazakhstan Теl.: (7212) 77-04-38 (add. 1026); fax: (7212) 35-63-98.

E-mail: vestnikku@gmail.com. Web-site: mathematics-vestnik.ksu.kz

Editors

Zh.Т. Nurmukhanova, S.S. Balkeyeva, D.V. Volkova

Computer layout

G.K. Kalel

Bulletin of the Karaganda University. Mathematics series.

ISSN 2518-7929 (Print). ISSN 2663–5011 (Online).

Proprietary: NLC «Karagandy University of the name of academician E.A. Buketov».

Registered by the Ministry of Information and Social Development of the Republic of Kazakhstan.

Rediscount certificate No. KZ43VPY00027385 dated 30.09.2020.

Signed in print 29.06.2021. Format 60×84 1/8. Offset paper. Volume 19,37 p.sh. Circulation 200 copies.

Price upon request. Order № 48.

Printed in the Publishing house of NLC «Karagandy University of the name of acad. E.A. Buketov».

28, University Str., Karaganda, 100024, Kazakhstan. Tеl.: (7212) 35-63-16. E-mail: izdkargu@mail.ru c Karagandy University of the name of acad. E.A. Buketov, 2021

(4)

MATHEMATICS

Ashyralyev A., Sadybekov M.Recent advances in PDE and their applications. Preface . . . . Ashyralyev A., Erdogan A.S. Parabolic time dependent source identification problem with involution and Neumann condition . . . . Ashyralyev A., Ashyralyyeva M., Batyrova O. On the boundedness of solution of the second order ordinary differential equation with damping term and involution . . . . Ashyralyev A., Ibrahim S., Hincal E.On stability of the third order partial delay differential equation with involution and Dirichlet condition . . . . Ashyralyev A., Urun M.On the Crank-Nicolson difference scheme for the time-dependent source identi- fication problem. . . . Ashyralyyev C., Akyuz G. On fourth order accuracy stable difference scheme for a multi-point overdetermined elliptic problem . . . . Cavusoglu S., Mukhtarov O.Sh. A new finite difference method for computing approximate solutions of boundary value problems including transition conditions. . . . Kanetov B.E., Baidzhuranova A.M.Paracompact-type mappings . . . . Kerimbekov A., Ermekbaeva A.T., Seidakmat kyzy E.On the solvability of the tracking problem in the optimization of the thermal process by moving point controls . . . . Mardanov M.J., Mammadov R.S., Gasimov S.Yu., Sharifov Ya.A.Existence and uniqueness results for the first-order non-linear impulsive integro-differential equations with two-point boundary conditions Muradov F.Kh.Ternary semigroups of topological transformations . . . . Mustapha U.T., Hincal E., Yusuf A., Qureshi S., Sanlidag T., Muhammad S.M., Kaymakamzade B., Gokbulut N.Transmission dynamics and control strategies of COVID-19: a modelling study. . . . Mustapha U.T., Sanlidag T., Hincal E., Kaymakamzade B., Muhammad S.M., Gokbulut N.Modelling the effect of horizontal and vertical transmissions of HIV infection with efficient control strategies . . . . Sinsoysal B., Rasulov M., Yener O. Grid method for solution of 2D Riemann type problem with two discontinuities having in initial condition . . . . Utebaev D., Utepbergenova G.Kh., Tleuov К.О.On convergence of schemes of finite element method of high accuracy for the equation of heat and moisture transfer . . . . Yildirim O., Caglak S. On the Lie symmetries of the boundary value problems for differential and difference sine-Gordon equations . . . . INFORMATION ABOUT AUTHORS . . . .

4 5 16 25 35 45 54 62 67 74 84 92 106 115 129 142 154

(5)

MSC 34K28, 35A35, 35G15, 35J15, 35J25, 35K10, 35K60, 35L05, 35L10, 35L35, 35M10, 35M12, 35N25, 35R30, 35S15, 39A14, 42A10, 42B10, 45J05, 45J99, 47A62, 47B39, 54E15, 54D20, 58J05, 58J32, 58J99, 58JXX, 60H30, 65M06, 65H10, 65H30, 65J22, 65N06, 82D75

Guest-Editors: A. Ashyralyev

1−3,*

, M. Sadybekov

3

1 Near East University, Nicosia, TRNC, Mersin 10, Turkey;

2 Peoples’ Friendship University of Russia (RUDN University), Moscow, Russia;

3 Institute of Mathematics and Mathematical Modeling, Almaty, Kazakhstan (E-mail: aallaberen@gmail.com, sadybekov@math.kz)

Recent advances in PDE and their applications Preface

This issue is a collection of 15 selected papers of foreign and national scientists. All these have been accepted after peer-reviewing and contain numerous new results in the fields of construction and investigation of solutions of well-posed and ill-posed boundary value problems for partial differential equations and their related applications. The authors of the selected papers are from different countries: Turkey, Kazakhstan, USA, Russian Federation, Azerbaijan, Kirgizistan, Uzbekistan, Turkmenistan, Pakistan and Nijerya. We are especially pleased with the fact that many articles are written by co-authors who work in different universities around the world.

Keywords:partial differential equations, hyperbolic-parabolic equations, integro-differential equations, boun- dary value problem, Dirichelt problem, well-posedness, regular solutions, numerical methods and solutions, difference scheme, involution, stability.

Guest-Editors:A. Ashyralyev andM. Sadybekov April 15, 2021

*Corresponding author.

E-mail: aallaberen@gmail.com

(6)

MSC 35N25, 65J22, 39A14

A. Ashyralyev

1−3

, A.S. Erdogan

4,*

1Near East University, Nicosia, Turkey;

2Peoples’ Friendship University of Russia (RUDN University), Moscow, Russia;

3Institute of Mathematics and Mathematical Modeling, Almaty, Kazakhstan;

4Palm Beach State College, FL, USA

(E-mail: allaberen.ashyralyev@neu.edu.tr, aserdogan@gmail.com)

Parabolic time dependent source identification problem with involution and Neumann condition

A time dependent source identification problem for parabolic equation with involution and Neumann condi- tion is studied. The well-posedness theorem on the differential equation of the source identification parabolic problem is established. The stable difference scheme for the approximate solution of this problem and its stability estimates are presented. Numerical results are given.

Keywords:well-posedness, coercive stability, source identification, exact estimates, boundary value problem.

Introduction

The theory and applications of source identification problems (SIPs) for partial differential equations have been studied and for references we refer to articles [1–9] and the references given therein. Also, numerous source identification problems for hyperbolic-parabolic equations and their applications have been investigated too (see, e.g., [10–13] and the references given therein). In the last decade partial differential equations with involutions were investigated by several authors including Ashyralyev and Sarsenbi [14–17]. However, source identification problems for parabolic equations with involution still need more investigating.

The present paper is devoted to the study of a time SIP for parabolic equation with involution and Neumann condition. The stability theorem on the differential equation of the source identification parabolic problem is proved. The stable difference scheme (DS) for the approximate solution of this problem is constructed.

Furthermore, stability estimates for the DS of the time source identification parabolic problem are established.

Numerical results are provided.

Stability and coercive stability of the differential problem We consider the time SIP









ut(t, x)−(a(x)ux(t, x))x−β(a(−x)ux(t,−x))x+δu(t, x)

=p(t)q(x) +g(t, x), −l < x < l, 0< t < T, u(0, x) =ϕ(x), −l≤x≤l,

ux(t,−l) =ux(t, l) = 0, Z l

0

u(t, x)dx=γ(t), 0≤t≤T

(1)

for the one dimensional parabolic differential equation with involution and Neumann boundary condition.

Throughout this paper, we assume that the following conditions hold

a≥a(x) =a(−x)≥a >0, x∈(−`, `), a−a|β| ≥0, δ≥0, q0(−l) =q0(l) = 0,

Z l 0

q(x)dx6= 0.

Under compatibility conditions, identification problem (1) has a unique solution (u(t, x), p(t))for the smooth functionsg(t, x),(t, x)∈(0, T)×(−l, l), a(x), q(x), x∈(−l, l)andγ(t), t∈[0, T], ϕ(x), x∈[−l, l].

*Corresponding author.

E-mail: aserdogan@gmail.com

(7)

Assume that H is a Hilbert space andAis the self-adjoint positive-definite operator defined by the formula Az=− d

dx

a(x)dz(x) dx

−β d dx

a(−x)dz(−x) dx

+δz(x) (2)

with domain

D(A) ={z:z, z00∈L2[−l, l], z0(−l) =z0(l) = 0}.

Here and in the rest of this paper,C0α([0, T], H) (0< α <1)stands for Banach spaces of all abstract continuous functions ϕ(t) defined on [0, T] with values in H satisfying a H¨older condition with weight tα for which the following norm is finite

kϕkCα

0([0,T],H)=kϕkC([0,T],H)+ sup

0≤t<t+τ≤T

(t+τ)αkϕ(t+τ)−ϕ(t)kH

τα .

Here, C([0, T], H)stands for the Banach space of all abstract continuous functionsϕ(t)defined on [0, T]with values inH equipped with the norm

kϕkC([0,T],H)= max

0≤t≤Tkϕ(t)kH.

Moreover, let the Sobolev space W22[−`, `] be defined as the set of all functionsv(x)defined on[−`, `]such that bothv(x)andv00(x)are locally integrable inL2[−`, `], equipped with the norm

kvkW2 2[−`,`]=

`

Z

−`

|v(x)|2dx

1/2

+

`

Z

−`

|v00(x)|2dx

1/2

.

Theorem 1. Assume that f(t, x) and ζ(t) are continuously differentiable functions. Then the SIP (1) has a unique solution u ∈ C(L2[−l, l]) and p ∈ C[0, T], and for the solution of SIP (1) the following stability estimates hold

kutkC(L

2[−l,l])+kukC(W22[−l,l]) +kpkC[0,T]6M(q, δ)h kϕkW2

2[−l,l]

+kg(0,·)kL

2[−l,l]+kgtkC(L

2[−l,l])+kζtkC[0,T]i .

Theorem 2.Assume thatg(t, x)andζ(t) are continuously differentiable functions andζt(t)is satisfying a H¨older condition with the ; weighttα. Then the SIP (1) has a unique solutionu∈C0α([0, T], L2[−l, l])and p∈C0α[0, T]. For the solution of SIP (1) the following coercive stability estimates hold:

kutkCα

0([0,T],L2[−l,l])+kukCα

0([0,T],W22[−l,l]) +kpkCα

0[0,T] 6M(q, δ)h kϕkW2

2[−l,l]

+α(1−α)1 kgkCα

0([0,T],L2[−l,l])+kζtkCα 0[0,T]

i. Proof. Denoted as

u(t, x) =w(t, x) +η(t)q(x), (3)

where

η(t) = Z t

0

p(s)ds, η(0) = 0 (4)

andw(t, x)is the solution of the following problem

























wt(t, x)−(a(x)wx(t, x))x+δw(t, x)

=g(t, x) +η(t) [(a(x)qx(x))x−δq(x)], x∈(−l, l), t∈(0, T),

w(0, x) =ϕ(x), x∈[−l, l], wx(t,−l) =wx(t, l) = 0, t∈[0, T].

(5)

(8)

Applying the condition

Z l 0

u(t, x)dx=ζ(t) and formula (3), we can write

η(t) =q −ζ(t) + Z l

0

w(t, x)dx

!

, (6)

where

q= 1

Rl

0q(x)dx . Applying formulas (4) and (6), we get

p(t) =q −ζ0(t) + Z l

0

wt(t, x)dx

!

. (7)

ApplyingRl

0q(x)dx6= 0, we get the estimate

|p(t)|6K1(q)

t(t)|+||wt(t,·)||L2[−l,l]

(8)

for each t∈[0, T].From (7) and (8) follows it kpkC([0,T])≤K1(q)h

tkC[0,T]+kwtkC([0,T],L

2[−l,l])

i

, (9)

kpkCα

0[0,T]≤K2(q)h kζtkCα

0[0,T])+kwtkCα

0([0,T],L2[−l,l])

i

. (10)

Applying (3), we get

ut(t, x) =wt(t, x) +p(t)q(x) and

kutkC([0,T],L

2[−l,l])6kwtkC([0,T],L

2[−l,l])+kpkC[0,T])kqkL

2[−l,l]), kutkCα

0([0,T],L2[−l,l])6kwtkCα

0([0,T],L2[−l,l])+kpkCα

0[0,T])kqkL

2[−l,l]). Therefore, the following theorems will complete the proof of Theorem 1 and 2.

Theorem 3.Under assumptions of Theorem 1, inC([0, T], L2[−l, l])the problem (5) has a unique solution and the following stability estimate is satisfied:

kwtkC([0,T],L

2[−l,l])6K2(q, δ)h kϕkW2

2[−l,l]+|ζ(0)|

+kg(0,·)kL

2[−l,l]+kgtkC([0,T],L

2[−l,l])+kζtkC[0,T]i .

Theorem 4.Under assumptions of Theorem 2, inC0α([0, T], L2[−l, l])the problem (5) has a unique solution and the following coercive stability estimate is satisfied:

kwtkCα

0([0,T],L2[−l,l])6K2(q, δ)h kϕkW2

2[−l,l]

+α(1−α)1 kgkCα

0([0,T],L2[−l,l])+kζtkCα 0[0,T]

i . Proof. Problem (5) can be written in the following abstract form

( w0(t) +Aw(t) =−η(t)Aq+g(t), 0< t < T,

w(0) =ϕ (11)

in a Hilbert spaceH =L2[−`, `]with the space operatorA=Axdefined by the formula (2). Hereg(t) =g(t, x) is given abstract function,w(t) =w(t, x)is unknown function, andq=q(x)is the unknown element ofL2[−`, `].

The proofs of Theorems 3 and 4 are based on estimates (8), (9) and (10), theorems on stability and coercive stability of the abstract problem (11) [9], the integral inequality and the self-adjointness and positive definiteness of the space operatorAx defined by formula (2) [15].

(9)

Stability and coercive stability of DS

Letα∈(0,1)be a given number andCτα(H) =C0α([0, T]τ, H]), Cτ(H) =C([0, T]τ, H)be Banach spaces of allH-valued mesh functionswτ={wk}Nk=0 defined on

[0, T]τ={tk=kτ,06k6N, N τ=T} with the corresponding norms

kwτkC

τ(H)= max

0≤k≤NkwkkH, kwτkCα

τ(H)= sup

1≤k<k+n≤N

(N−n)−α(k)αkwk+n−wkkH+kwτkC

τ(H).

Moreover, let L2h = L2[−l, l]h and W2h2 = W22[−l, l]h be normed spaces of all mesh functions γh(x) ={γn}Mn=−M defined on

[−l, l]h={xn =nh,−M 6n6M, M h=l}

equipped with norms

γh L

2h =

 X

x∈[−l,l]h

γh(x)

2h

1/2

and

γh W2

2h

= γh

L

2h+

 X

x∈[−l,l]h

γh

xx,j

2

h

1/2

, respectively. Moreover, we introduce the difference operator Axhdefined by the formula

Axhuh(x) ={−(a(x)ux(x))x,r−β(a(−x)ux(−x))x,r+δur}M−M+1−1 , (12) acting in the space of mesh functions uh(x) = {un}Mn=−M defined on [−l, l]h satisfying the conditions uM−uM−1=u−M−u−M+1= 0.For the numerical solution

uhk(x) Nk=0 of SIP (1) we present DS of the first order of approximation

























ukn−uk−1n τh1

an+1

ukn+1−ukn h −an

ukn−ukn−1 h

βh a−n+1u

k

−n+1−uk−n

h −a−nu

k

−n−uk−n−1 h

+δukn =pkqn+gkn, gnk =g(tk, xn), tk∈[0, T]τ, xn∈[−l, l]h, k∈1, N , n∈1, M−1, u0nn, ϕn=ϕ(xn), n∈0, M ,

ukM−ukM−1=uk−M+1−uk−M = 0,PM

i=1ukih=ζk, ζk=ζ(tk), k∈0, N .

(13)

Here it is assumed thatqM−qM−1=q−M−q−M+1= 0,and PM

m=1qmh6= 0.Let us give the following results on the stability of DS (13).

Theorem 5. For the solution of DS (13), the stability estimate

1

τ uhk−uhk−1 N

k=1

C

τ(L2h)

+

uhk Nk=1 C

τ(W2h2 )+

{pk}Nk=1 C[0,T]

τ

6K(q)h ϕh

W2 2h

+ g1h

L

2h+|ζ0| +

1

τ ghk−gk−1h N

k=2

C

τ(L2h)

+

1

τ(ζk−ζk−1) N

k=1

C[0,T]

,

(10)

and coercive stability estimate

1

τ uhk −uhk−1 N

k=1

Cα

τ(L2h)

+

uhk Nk=1 Cα

τ(W2h2 )+

{pk}Nk=1 Cα

0[0,T]τ

6K(q)h ϕh

W2 2h

+ 1

α(1−α)

gkh Nk=1 Cα

τ(L2h)

+

1

τ(ζk−ζk−1) N

k=1

Cα

0[0,T]τ

hold.

Proof. We will use

ukn =wknkqn, (14)

where

qn=q(xn), ηk=

k

X

m=1

pmτ.

It is easy to use

whk(x) Nk=0 as the solution of the following DS

wkn−wk−1n

τ −h

1 h

an+1

wkn+1−wkn h −an

wkn−wkn−1 h

βh

a−n+1w

k

−n+1−wk−n

h −a−nw

k

−n−wk−n−1 h

+δwnk

=−h

1h qn+1

wkn+1−wnk h −qn

wkn−wn−1k h

βh q−n+1w

k

−n+1−wk−n

h −q−nw

k

−n−wk−n−1 h

+δqknηk

i +gnk, k∈1, N , n∈1, M−1,

w0nn, n∈0, M ,

wkM−wkM−1=w−M+1k −wk−M = 0, k∈k∈0, N .

(15)

Now we estimate|pk|.Using the condition PM

m=1ukmh=ζk and (14), we obtain ηk =b1 ζk

M

X

m=1

wkmh

! , where

b1= 1

PM m=1qmh. Then,

pk =b1

τ ζk−ζk−1

M

X

m=1

(wmk −wmk−1)h

!

. (16)

Applying the Cauchy-Schwartz inequality, we get

|pk|6|b1|[|ζk−ζk−1

τ |+

M

X

m=1

|wmk −wmk−1

τ |h]

6K(b)

"

ζk−ζk−1

τ

+

whk −wk−1h τ

L

2h

#

(17) for every16k6N, and

{pk}Nk=1 C[0,T]

τ

(11)

6K(b)

ζk−ζk−1 τ

N

k=1

C[0,T]

τ

+

(whk−whk−1 τ

)N

k=1

C

τ(L2h)

. Moreover, using (16), we can write

{pk}Nk=1 Cα

0[0,T]τ

6K(b)

ζk−ζk−1

τ N

k=1

Cα

0[0,T]τ

+

(whk−whk−1 τ

)N

k=1

Cα

τ(L2h)

. (18) Applying (14), we obtain

ukn−uk−1n

τ = wkn−wk−1n

τ +pkqn. From that it follows

1

τ uhk−uhk−1 N

k=1

C

τ(L2h)

6

1

τ whk−whk−1 N

k=1

C

τ(L2h)

+

{pk}Nk=1 C[0,T]

τ

qh L

2h (19)

and

1

τ uhk −uhk−1 N

k=1

Cα

τ(L2h)

6

1

τ whk−whk−1 N

k=1

Cα

τ(L2h)

+

{pk}Nk=1 Cα

0[0,T]τ

qh L

2h. Therefore, the following theorem will complete the proof of Theorem 5.

Theorem 6. For the solution of DS (15), the stability estimate

1

τ wkh−wk−1h N

k=1

C

τ(L2h)

6K3(a)h ϕh

W2

2h

+ gh1

L

2h+|ζ0|

+

1

τ ghk −ghk−1 N

k=2

C

τ(L2h)

+

ζk−ζk−1 τ

N k=1

C[0,T]

τ

and coercive stability estimate

1

τ wkh−wk−1h N

k=1

Cα

τ(L2h)

6K3(q)

 ϕh

W2

2h

+ 1

α(1−α)

ghk Nk=1 Cα

τ

+

ζk−ζk−1 τ

N

k=1

Cα0[0,T]τ

hold.

Proof. Problem (15) can be written in the following abstract form

whk−whk−1

τ +Ahwkh=ghk−Ahqhηk, tk=kτ,16k6N, wh0h

(20) in a Hilbert spaceH =L2h with the space operatorAh=Axh defined by the formula (12). Here,ghk =ghk(x)is given abstract mesh function,whk =wkh(x)is unknown mesh function andqh=qh(x)is the unknown element of L2h. The proof of Theorem 6 is based on estimates (17), (18) and (19), theorems on stability and coercive stability of the abstract problem (20) (see [9]), difference analogy of integral inequalities, and the self-adjointness and positive definiteness of the difference operatorAxh defined by the formula (12) [15].

(12)

Numerical experiment

In this section a numerical computation to approximate solution of a time dependent source identification problem with involution and Neumann conditions is considered to support the theoretical results. We use the first order of accuracy difference schemes. The error analysis is given.

We consider













ut(t, x)−uxx(t, x)−12uxx(t,−x) +u(t, x)

=p(t) (1 + cosx) +cosx 2 −1

e−t, x∈(−π, π), t∈(0, π), u(0, x) = 1 + cosx, x∈[−π, π],

ux(t,−π) =ux(t, π) = 0, t∈[0, π], Rπ

0 u(t, s)ds=πe−t, t∈[0, π]

(21)

for parabolic equation with involution and Neumann condition. The integral condition is given as an overdetermi- ned condition. The exact solution of this problem is

u(t, x) = (1 + cosx)e−t,−π≤x≤π,0≤t≤π, p(t) = e−t, t∈[0, π].

Here we denote the set[0, π]τ×[−π, π]h of all grid points

[0, π]τ×[−π, π]h={(tk, xn) :tk=kτ,0≤k≤N, N τ =π, xn=nh,−M ≤n≤M, M h=π}. For obtaining the solution to problem (21) we apply the substitution

u(t, x) =w(t, x) +η(t) (1 + cosx), where

η(t) = Z t

0

p(s)ds, η(0) = 0.

One can show that after the substitution, problem (21) turns to









wt(t, x)−wxx(t, x)−12wxx(t,−x) +w(t, x)

=−

5 cosx 2 + 1

η(t) +cosx 2 −1

e−t, x∈(−π, π), t∈(0, π), w(0, x) = 1 + cosx, x∈[−π, π],

wx(t,−π) =wx(t, π) = 0, t∈[0, π].

(22)

Moreover, using the overdetermined condition we can write Z π

0

u(t, s)ds= Z π

0

w(t, s)ds+η(t) Z π

0

(1 + coss)ds=πe−t and

η(t) = πe−t−Rπ

0 w(t, s)ds

π .

For the numerical solution of (22), we present the first order of accuracy difference scheme





















τ−1 wkn−wk−1n

−h−2 wn+1k −2wnk+wn−1k

12h−2 wk−n+1−2w−nk +wk−n−1 +wnk

1π

5 cosxn

2 + 1

PM−1 n=0 wkn h

=−(2 + 2 cosxn)e−tk,

1≤k≤N, −M+ 1≤n≤M−1, w0n= 1 + cosxn, −M ≤n≤M,

wk−M+1−wk−M =wkM−wkM−1= 0, 0≤k≤N.

(23)

(13)

For obtaining the solution of difference scheme (23), we rewrite it in the matrix form

A Wk+B Wk−1=Rϕk, 1≤k≤N, W0=ϕ , (24)

where

A=

1 −1 0 0 . . . 0 0 0 0

a b a 0 . . d−M+1 . . d−M+1 d−M+1+c d−M+1−a c

0 a b a . . d−M+2 . . d−M+2+c d−M+2−a d−M+2+c 0

. . . .

0 0 0 0 . a+c b−a+d0 a+c+d0 . d0 d0 d0 0

. . . .

0 c −a c . . dM−2 . . a+dM−2 b+dM−2 a+dM−2 0

c −a c 0 . . dM−1 . . dM−1 dM−1 dM−1 a

0 0 0 0 . . . 0 0 1 −1

 ,

B =

0 0 0 0 . 0 0 0 0 e 0 0 . 0 0 0 0 0 e 0 . 0 0 0 . . . . 0 0 0 0 . e 0 0 0 0 0 0 . 0 e 0 0 0 0 0 . 0 0 0

and

a=−1

h2, b= 1 τ + 2

h2 + 1, c=− 1

2h2, e= 1 τ, di =−h

π

5 cosxi

2 + 1

, i=−M + 1,−M + 2, ...M−1,

Ws=

 W−Ms ... WMs

for s=k, k−1,

R=

1 0 . 0 0 1 . 0 . . . . 0 0 . 1

, ϕk =

 0 ϕk−M+1 ... ϕkM−1 0

 .

So, we have a first order difference equation with respect to kwith matrix coefficients. From (24) it follows that

Wk =−A−1BWk−1+A−1k k= 1,· · ·, N.

In the second step, using the formulas

ukn=wknk(1 + cosxn), 0≤k≤N, −M ≤n≤M,

ηk = πe−tk−PM−1 n=0 wkn h

π , 1≤k≤N, η0= 0, pk = ηk−ηk−1

τ , 1≤k≤N, we can find the approximate solutions foru(t, x)andp(t).

We compute the error between the exact solution and numerical solution by





kEuk= max

0≤k≤N,−M≤n≤M

u(tk, xn)−ukn , kEηk= max

1<k<N|η(tk)−ηk|, kEpk= max

1<k<N|p(tk)−pk|,

(14)

whereu(t, x), p(t), η(t)represent the exact solutions,ukn represents the numerical solution at (tk, xn), and pk andηk represent the numerical solutions attk.The numerical results are given in Table 1.

T a b l e 1

Errors kEuk kEηk kEpk

N =M = 30 6.6666·10−2 7.3894·10−2 1.1917·10−1 N =M = 60 3.3333·10−2 3.6655·10−2 6.6532·10−2 N=M= 120 1.6667·10−2 1.8262·10−2 3.5167·10−2 N=M= 240 8.3333·10−3 9.1165·10−3 1.8081·10−2

Conclusion

In this paper we considered a time dependent source of identification problem for parabolic equation with involution and Neumann condition. The theoretical considerations that prove well-posedness theorem on the differential equation of the source identification parabolic problem and stability estimates for the difference scheme of the source identification parabolic problem were given. To support the theoretical results by a numeri- cal experiment we constructed a stable difference scheme for the approximate solution of the problem. Obtained results given in Table 1 support the theoretical results.

Acknowledgements

We would like to thank the following institutions for their support. The publication has been prepared with the support of the "RUDN University Program 5-100". This research has been funded by the Science Committee of the Ministry of Education and Science of the Republic of Kazakhstan (Grant No. AP08855352).

References

1 Choulli M. Generic well-posedness of a linear inverse parabolic problem with respect to diffusion parameters / M. Choulli, M. Yamamoto // Journal of Inverse and III-Posed Problems. — 1999. — 7. — No.3. — P. 241–

254.

2 Ashyralyev A. On source identification problem for a delay parabolic equation / A. Ashyralyev, D. Agi- rseven // Nonlinear Analysis: Modelling and Control. — 2014. — 19. — No.3. — P. 335–349.

3 Ashyralyev A. On the problem of determining the parameter of an elliptic equation in a Banach space/

A. Ashyralyev, C. Ashyralyyev // Nonlinear Analysis: Modelling and Control. — 2014. — 19. — No. 3. — P. 350–366.

4 Erdogan A.S. On the second order implicit difference schemes for a right hand side identification problem / A.S. Erdogan, A. Ashyralyev // Appl. Math. Comput. — 2014. — 226. — P. 212–228.

5 Ashyralyev A. On the determination of the right-hand side in a parabolic equation / A. Ashyralyev, A.S. Erdogan, O. Demirdag // Applied Numerical Mathematics. — 2012. — 62. — No. 11. — P. 1672–

1683.

6 Ashyralyyev C. High order approximation of the inverse elliptic problem with Dirichlet-Neumann condi- tions / C. Ashyralyyev // Filomat. — 2014. — 28. — No. 5. — P. 947–962.

7 Blasio G. Di. Identification problems for parabolic delay differential equations with measurement on the boundary / G. Di. Blasio, A. Lorenzi // Journal of Inverse and Ill-Posed Problems. — 2007. — 15. — No. 7. — P. 709–734.

8 Jator S. Block unification scheme for elliptic, telegraph, and Sine-Gordon partial differential equations / S. Jator // American Journal of Computational Mathematics. — 2015. — 5. — No. 2. — P. 175–185.

9 Ashyralyev A. New Difference Schemes for Partial Differential Equations / A. Ashyralyev, P.E. Sobolevskii // Birkh¨auser Verlag, Basel, Boston, Berlin. — 2004.

10 Ashyralyev A. On source identification problem for a hyperbolic-parabolic equation / A. Ashyralyev, M.A. Ashyralyyeva // Contemporary Analysis and Applied Mathematics. — 2015. — 3. — No. 1. — P. 88–103.

(15)

11 Ashyralyyeva M.A. Stable difference scheme for the solution of the source identification problem for hyperbolic-parabolic equations / M.A. Ashyralyyeva, A. Ashyralyyev // AIP Conference Proceedings. — 2015. — 1676. Article Number: 020024.

12 Ashyralyyeva M.A. On the numerical solution of identification hyperbolic-parabolic problems with the Neumann boundary condition / M.A. Ashyralyyeva, M. Ashyraliyev // Bulletin of the Karaganda University-Mathematics. — 2018. — 91. — No.3. — P. 69–74.

13 Ashyralyyeva M.A. Numerical solutions of source identification problem for hyperbolic-parabolic equations / M.A. Ashyralyyeva, M. Ashyraliyev // AIP Conference Proceedings. — 2018. — 1997. Article Number:

020048.

14 Ashyralyev A. Well-posedness of an elliptic equation with involution / A. Ashyralyev, A. Sarsenbi //

Electron. J. Differential Equations. — 2015. — 2015. — 284. — P. 1–8.

15 Ashyralyev A. Well-Posedness of a parabolic equation with involution / A. Ashyralyev, A. Sarsenbi //

Numerical Functional Analysis and Optimization. — 2017. — 38. — No.10. — P. 1295–1304.

16 Ashyralyev A. Stability of a hyperbolic equation with the involution, in: Functional Analysis in Interdi- sciplinary Applications / A. Ashyralyev, A. Sarsenbi // Vol. 216 of Springer Proceedings in Mathematics

& Statistics Book Series. — 2016. — P. 204–212.

17 Cabada A. Differential Equations with Involutions / A. Cabada, F. Tojo. Atlantis Press.

A. Ашыралыев

1−3

, А.С. Ердоган

4

1Таяу Шығыс университетi, Никосия, Түркия;

2Ресей халықтар достығы университетi, Мәскеу, Ресей;

3Математика және математикалық модельдеу институты, Алматы, Қазақстан;

4Палм-Бич мемлекеттiк колледжi, Флорида, АҚШ

Инволюциямен және Дирихле шартымен сәйкестендiрудiң параболалық мәселесi туралы ескерту

Инволюция және Дирихле шарты бар параболалық теңдеу үшiн дереккөздi анықтаудың кеңiстiк- тiк есептерi зерттелдi. Параболалық дифференциалдық теңдеу үшiн дереккөздi анықтау есебiнiң дұрыстығы теоремасы анықталды. Бұл есептiң жуық шешiмiн табу үшiн тұрақты айырымдық схема берiлген. Сонымен қатар, дереккөздi сәйкестендiрудiң параболалық есебiнiң айырымдық схемасының тұрақтылығының бағалаулары ұсынылған. Сандық нәтижелер келтiрiлген.

Кiлт сөздер:корректiлiк, эллипстiк теңдеулер, коэрцитивтi тұрақтылық, дереккөздi идентификация- лау, дәл бағалаулар, шеттiк есеп.

A. Ашыралыев

1−3

, А.С. Ердоган

4

1Ближневосточный университет, Никосия, Турция;

2Российский университет дружбы народов, Москва, Россия;

3Институт математики и математического моделирования, Алматы, Казахстан;

4Государственный колледж Палм-Бич, Флорида, США

Замечание о параболической проблеме идентификации с инволюцией и условием Дирихле

Исследованы пространственные задачи идентификации источника для параболического уравнения с инволюцией и условием Дирихле. Установлена теорема корректности задачи идентификации источни- ка для параболического дифференциального уравнения. Представлена устойчивая разностная схема для приближенного решения этой задачи. Кроме того, даны оценки устойчивости разностной схемы параболической задачи идентификации источника. Приведены численные результаты.

Ключевые слова:корректность, эллиптические уравнения, положительность, коэрцитивная устойчи- вость, идентификация источника, точные оценки, краевая задача.

(16)

References

1 Choulli, M., & Yamamoto, M. (1999). Generic well-posedness of a linear inverse parabolic problem with respect to diffusion parameters.Journal of Inverse and III-Posed Problems, 7(3), 241–254.

2 Ashyralyev, A., & Agirseven, D. (2014). On source identification problem for a delay parabolic equation.

Nonlinear Analysis: Modelling and Control, 19(3), 335–349.

3 Ashyralyev, A., & Ashyralyyev, C. (2014). On the problem of determining the parameter of an elliptic equation in a Banach space.Nonlinear Analysis: Modelling and Control, 19(3), 350–366.

4 Erdogan, A.S., & Ashyralyev, A. (2014). On the second order implicit difference schemes for a right hand side identification problem.Appl. Math. Comput., 226, 212–228.

5 Ashyralyev, A., Erdogan, A.S., & Demirdag, O. (2012). On the determination of the right-hand side in a parabolic equation.Applied Numerical Mathematics, 62(11), 1672–1683.

6 Ashyralyyev, C. (2014). High order approximation of the inverse elliptic problem with Dirichlet-Neumann conditions.Filomat, 28(5), 947–962.

7 Blasio, G. Di., & Lorenzi, A. (2007). Identification problems for parabolic delay differential equations with measurement on the boundary.Journal of Inverse and Ill-Posed Problems, 15(7), 709–734.

8 Jator, S. (2015). Block unification scheme for elliptic, telegraph, and Sine-Gordon partial differential equations.American Journal of Computational Mathematics, 5(2), 175–185.

9 Ashyralyev, A., & Sobolevskii, P.E.New Difference Schemes for Partial Differential Equations. Birkh¨auser Verlag, Basel, Boston, Berlin, 2004.

10 Ashyralyev, A., & Ashyralyyeva, M.A. (2015). On source identification problem for a hyperbolic-parabolic equation.Contemporary Analysis and Applied Mathematics, 3(1), 88–103.

11 Ashyralyyeva, M.A., & Ashyralyyev, A. (2015). Stable difference scheme for the solution of the source identification problem for hyperbolic-parabolic equations. AIP Conference Proceedings, 1676, Article Number: 020024.

12 Ashyralyyeva, M.A., & Ashyraliyev, M. (2018). On the numerical solution of identification hyperbolic- parabolic problems with the Neumann boundary condition.Bulletin of the Karaganda University-Mathe- matics, 91(3), 69–74.

13 Ashyralyyeva, M.A., & Ashyraliyev, M. (2018). Numerical solutions of source identification problem for hyperbolic-parabolic equations.AIP Conference Proceedings, 1997. Article Number: 020048.

14 Ashyralyev, A., & Sarsenbi, A. (2015). Well-posedness of an elliptic equation with involution. Electron.

J. Differential Equations, 2015, 284, 1–8.

15 Ashyralyev, A., & Sarsenbi, A. (2017). Well-Posedness of a parabolic equation with involution.Numerical Functional Analysis and Optimization, 38(10), 1295–1304.

16 Ashyralyev, A., & Sarsenbi, A. (2016). Stability of a hyperbolic equation with the involution, in: Functional Analysis in Interdisciplinary Applications.Vol. 216 of Springer Proceedings in Mathematics & Statistics Book Series, 204–212.

17 Cabada, A., & Tojo, F.Differential Equations with Involutions. Atlantis Press, 2015.

(17)

MSC 35J25, 47E05, 34B27

A. Ashyralyev

1−3

, M. Ashyralyyeva

4

, O. Batyrova

1,5,*

1Near East University, Nicosia, Turkey;

2Peoples’ Friendship University of Russia (RUDN University), Moscow, Russia;

3Institute of Mathematics and Mathematical Modeling, Almaty, Kazakhstan;

4Magtymguly Turkmen State University, Ashgabat, Turkmenistan;

5Oguz Han Engineering and Technology University of Turkmenistan, Ashgabat, Turkmenistan (E-mail: aallaberen@gmail.com, allaberen.ashyralyev@neu.edu.tr, ashyrmaral2010@mail.ru,

ogulbabek93@gmail.com)

On the boundedness of solution of the second order ordinary differential equation with damping term and involution

In the present paper the initial value problem for the second order ordinary differential equation with damping term and involution is investigated. We obtain equivalent initial value problem for the fourth order ordinary differential equations to the initial value problem for second order linear differential equations with damping term and involution. Theorem on stability estimates for the solution of the initial value problem for the second order ordinary linear differential equation with damping term and involution is proved. Theorem on existence and uniqueness of bounded solution of initial value problem for second order ordinary nonlinear differential equation with damping term and involution is established.

Keywords: differential equation with damping term and involution, stability, boundedness, existence and uniqueness.

Introduction

Differential equations with involution appear in mathematical models of ecology, biology, and population dynamics (see, e.g, [1–6] and the reference given therein).

Our goal in this paper is to investigate the boundedness of the solution of the initial value problem for the second order ordinary differential equation with damping term and involution

y00(t) =f(t, y(t), y0(t), y(u(t)), t∈I= (−∞,∞), y(t0) =y0, y0(t0) =y00. (1) Here and in future u(t) is involution function, that is u(u(t)) =t, and t0 is a fixed point of u. Problem (1) does not seem to yield directly to any techniques that can be used for ordinary differential equations without involution term [1, 2]. Therefore, we consider the second order linear differential equations with damping term and involution. We obtain equivalent initial value problem for the fourth order ordinary differential equations to the initial value problem for second order linear differential equations with damping term and involution.

Theorem on stability estimates for the solution of the initial value problem for the second order ordinary linear differential equation with damping term and involution is proved. Finally, theorem on existence and uniqueness of bounded solution of initial value problem for the second order nonlinear ordinary differential equation with damping term and involution is established. Note that some of the results of this work was presented, without proof, in [7].

Linear ordinary differential equation with damping term and involution LetC[I]be the set of all differentiable functions for all degrees.

Theorem 1.Leta(t), b(t), α(t)be functions of classConI, such thatb(t)does not vanish on the interval I, then the problem

y00(t) +α(t)y0(t) =a(t)y(t) +b(t)y(−t) +f(t), t∈I, y(0) =ϕ, y0(0) =ψ

*Corresponding author.

E-mail: ogulbabek93@gmail.com

(18)

is equivalent to the following problem for the fourth order ordinary differential equation













y(4)(t) =p(t)y(t) +q(t)y0(t) +r(t)y00(t) +s(t)y000(t) +F(t), t∈I, y(0) =ϕ, y0(0) =ψ,

y00(0) =a(0)ϕ+b(0)ϕ−α(0)ψ+f(0), y000(0) =h

−α(0) [a(0) +b(0)] +a0(0) +b0(0)i ϕ +h

−α0(0) +α2(0) +a(0)−b(0)i

ψ+f0(0)−α(0)f(0), where

p(t) =a00(t) +b(−t)b(t)−h

2b0(t) +b(t)α(−t)i 1 b(t)a0(t)

b00(t) +b(t)a(−t)−h

2b0(t) +b(t)α(−t)i 1 b(t)b0(t)

1 b(t)a(t), q(t) =−α00(t) + 2a0(t) +h

2b0(t) +b(t)α(−t)i 1 b(t)

0(t)−a(t)i

b00(t) +b(t)a(−t)−h

2b0(t) +b(t)α(−t)i 1 b(t)b0(t)

1 b(t)α(t), r(t) =−2α0(t) +a(t) +h

2b0(t) +b(t)α(−t)i 1 b(t)α(t) +

b00(t) +b(t)a(−t)−h

2b0(t) +b(t)α(−t)i 1 b(t)b0(t)

1 b(t), s(t) =−α(t) +h

2b0(t) +b(t)α(−t)i 1 b(t), and

F(t) =−

b00(t) +b(t)a(−t)−h

2b0(t) +b(t)α(−t)i 1 b(t)b0(t)

1 b(t)f(t)

−h

2b0(t) +b(t)α(−t)i 1

b(t)f0(t) +b(t)f(−t) +f00(t).

The proof of Theorem 1 is based on approaches of proof of Theorem 1 of paper [1] on the first order linear differential equation with involution.

Now, we consider the initial value problem

y00(t) +αy0(t) =by(−t) +ay(t) +f(t), t∈ I, y(0) =ϕ, y0(0) =ψ (2) for the second order involutory ordinary differential equation with damping term. We are interested in studying the stability of problem (2) onI.In general cases ofα, aandbthe solution of (2) is not bounded onI.Applying Theorem 1, we get the equivalent initial value problem





y(4)(t) + (a2−b2)y(t)− 2a+α2

y00(t) =F(t), F(t) =−af(t) +bf(−t)−αf0(t) +f00(t), t∈I, y(0) =ϕ, y0(0) =ψ, y00(0) = (b+a)ϕ−αψ+f(0), y000(0) =−α(b+a)ϕ+ −b+a+α2

ψ+f0(0)−αf(0)

(3)

for the fourth order ordinary differential equation. We will obtain the solution of problem (3). Assume that

|b|<|a|, a∈

α2 4 +αb22

,−α22

.Then, it is easy to see that d4y(t)

dt4 − 2a+α2d2y(t)

dt2 + a2−b2 y(t)

= d2

dt2− a+α2 2 +

r

24 4 +b2

!! d2

dt2 − a+α2 2 −

r

24 4 +b2

!!

y(t).

Ақпарат көздері

СӘЙКЕС КЕЛЕТІН ҚҰЖАТТАР

There is a boundary value of the angle β, at which particle upward movement is not possible at any values of the angular velocity of screw rotation.. In addition, there is the value

In this paper, the model-theoretical properties of the algebra of central types of mutually model-consistent fragments are considered. Also, the connections between the center and

Мақала барысында - энергияны тұтынуды бақылау және есепке алудың автоматтандырылған жүйесі жасалды. Электр энергиясын сату және беру туралы шарттар

В Зайсанском уезде, несмотря на то, что % так называемых оседлых киргиз значительно меньше, чем в Устькаменогорском уезде, % сеющих хозяйств почти равны, а в

Theorem on stability estimates for the solution of the initial value problem for the second order ordinary linear differential equation with damping term and involution is

In particular, the first order of accuracy difference schemes for the approximate solutions of the boundary value problem (2) has been constructed and the numerical algorithm

Осы &#34;Оқулық&#34; негiзiнде жатқан ғылыми және методологиялық математикалық тақырыптарын тiзiп атасақ – олар мектептегi көбейту кестесiнен

To illustrate the proposed approach for the numerical solving linear boundary value problems for the loaded differential and Fredholm integro-differential equations (1) and (2) on