• Ешқандай Нәтиже Табылған Жоқ

BY SULFUR AND NITROGEN

In document Х А Б А Р Ш Ы С Ы (бет 31-39)

Abstract. The aim of this paper is to determine the status of S (S content and the ratio of N: S) in the grain production and breedingof winter wheat in Kazakhstan. Material: 750 samples of winter wheat cuiltivars 2009- 2014 harvest, wild relatives and introgressive forms.Regions of winter wheat cultivation in sulfur content ranged from 1130 mg/kg (at the level of the deficit) for Zhambyl andTaldy-Korgan to a maximum 1640 mg/kg for the Ily region and the ratio ofN:S from14.9 (Sairam) to 19.6 (Sarkand). The level of S accumulation in the wild relatives grain was for: Ae. Triaristata 2404-2565 mg/kg; Aegilopscylindricae 2164-2404 mg/kg; T.militinae 2190-2330 mg/kg;

T.timopheevi 1841-2443 mg/kg; T.kiharae 2124-2205 mg/kg in comprasion with the cultivars in the range of 1452- 1836 mg/kg.Introgressiveform was characterized by S containing, intermediate between wild and cultivated form- sand N:S ratio in these forms ofits optimal for wheat bread (no more than 17:1). Thus, the constant line can be adap- tive resource of high protein and sulfur. Commercial and perspective cultivars of winter common wheat and regions of their cultivation are classified under the maintenance of sulfur (1005 up to 1818 mg/kg) and to balance N:S (from 13.6 up to 20.9).

Keywords: wheat, wild relatives, quality, sulfur, nitrogen/sulfur.

Introduction. It is known that the nutrient status sulfur (S) of wheat has an important influence on the baking properties of flour (Randall, Wrigley, 1986), which is expressed through the essential role of disulfide bonds to ensure the gluten functionality. The value of S-S bondscorrelate with the properties of elasticity and balance S-poor form proteins (ω-gliadins, HMS-glutenin) and S-rich (, -gliadin and glutenin-LMS), including at the level of gliadin biotypes [1].

The results [2]showed that the contents of GMP (Gluteninmacropolymer), high molecular weight glutenin subunit (HMW-GS) and low molecular weight glutenin subunit (LMW-GS) were improved by sulphur fertilizer under lower nitrogen (N) condition in both cultivars. Under normal N (240 kg N/ha) conditions, sulphur application improved the contents of HMW-GS, LMW-GS and GMP within sulphur rates from 30-60 kg/ha, while decreased when sulphur rate of 90 kg/ha. It is suggested that appropriate sulphur fertilizer was favourable for the formation of large GMP particles, but too much of it was unfavourable under normal nitrogen condition. Sulphur fertilizer did not significantly affect the number distribution of GMP particles in both cultivars [2].

During the last decades, sulphur (S) deficiency in agricultural soilshas become widespreadin many European countries [3-9].

Need wheat in sulfur is not so great: about 20 kg s for the average yield of 8 t/ha [10]. Several studies have shown the status of S (S content and the ratio of N: S) as an important factor affecting the baking

quality of flour [11]. At the same time A.R.Woodinget. al. [12] believe that the baking properties of N: S = 12,5:1 is the optimum, and in > 13:1 additional need for mixing dough. Structural part of the s 1 requires 15 pieces N. If s is in short supply as a result of N fertilizer, the accumulation of non-protein

components, such as amides increases the N: S to more than 15:1 [13]. Comparison of the total N and S, and protein N: S provides useful information on the nutrient balance between N and S in plants and used in the diagnosis of the status of S. There was a trend that decreases with time and content S (1992-1993 - 1,35 mg/g, 1981-1982 - 1.72 mg/g) and N:S increases from 12:1 up to 16:1. S content is limit in second place after N (for example, in the north of germany) contentis critical and scarce S 1,2 mg/g and 17:1 (N: S) [11].

Furthermore, the technological properties of bread wheat are greatly affected by S deficiency [11, 14].

Forexample, S deficiency has been reported toproducedoughsthat are less extensible and loavesof smaller volume and poorer texture [14, 15]. These deterioration sinrheological properties of doughsandin bread- making quality of grain were associated with changes in thequantitative composition of gluten proteins [17, 18].

Aim: To determine the status of S (S content and the ratio of N:S) in the grain business and promising varieties of winter wheat in Kazakhstan.

Material and methods. 750 samples of grain of winter wheat of different cultivars from 14 region of Kazakhstan 2009-2014 harvest.Field methods and sampling techniques, according to National standard 13586.3-83, protein content – by Kjeldal method. S content in grain and flour are determined by inductive plasma-atomic emission spectrometry (ICPAES) based Sabanci University Istanbul, Turkey [7].

Results. The S content in the grain of winter wheat ranged from 1005 mg/kg (Krasnovodopadskaya 90 cultivars, Zhambyl) to 1793 mg/kg - Sultan 2, Ili rainfed and 1818 mg/kg for Pamyat 47 variety, in Lenger region (Table 1). Critically low maintenance deficit S (less than 1.2 mg/g – byZhao [11], it was noted for cultivars Karligash– 1060mg/kg (Zhana-Korgan), 1118 mg/kg for cultivars Zhetysu, Almaly (Krasnogorsk and Taldy-Korgan); Yuzhnaya 12 (Sairam), Nureke 1151 mg/kg (Sarkand).Basically profiled gene pool on the sulfur content in the range characterized 1100-1500 mg/kg (Figure 1).

Figure 1 – Distributionof the genofund of the Kazakhstan varietal winter wheat the sulfur (S) mg/kg

Regions of winter wheat cultivation in sulfur content ranged from 1130 mg/kg (at the level of the deficit) for Zhambyl, Taldy-Korgan and Zhana-Korgan to a maximum 1640 mg/kg for the Ily region (Table 1) and the ratio of N: S from 14.9 (Sairam) to 19.6 (Sarkand).

According to the S contentin wheat graindeficientregions Zhambyl,Taldy-Korgan, Zhana-Korgan (average regional values), on the minimum values forindividual varietiesalso identifiedregionsSarkand andZelenovsky. Ratio of nitrogen/sulfur(N:S) in the grainequals16, 9-18, 6for minimumfor regions it Sarkand, Zhambyland furtherregional Kerbulak(by sulfur (S) content it is not identifiedas the critical 1237-1393mg/kg). The mean values of N:Sare to deficit region sadded Zelenovsky (Western Kazakhstan), Taldy-Korganand Saryagash. Similarity of the regionson the S contentandthe ratio of N:S synchronously classification of regionsin the wholegrainmineral composition according to the resultsof the cluster analysis (Figure 2). Thus, winter wheatgrowing regionsaredifferentiated bythe ability to accumulateina different level ofgrainelementsincluding.

Grain sulfur deficiencyin differentiatedfor cultivarsin the region. S contentless than 1200 mg/kg noted for third severale winter wheatin Kazakhstan. Cultivars Zhadyra, Karlygash, Krasnovodopadskaya 90, Bezostaya1, Zhetisu, Aliya, Sultan 2characterized by low levels (less than 1200 mg/kg) in 30-50%of allthe researched samples (Table 2). According toa ratio of N:S in winter wheatis characterized by lackof sulfuras a whole, since half ofthe samplesthe ratioN:Sis inthe range of17:1to 19:1, andfor cultivars Zhadyra, Reke, Aliyaisa more than19:1 ratio (Table 2).

>1300

>1500 

>1700

>1000

>1100

 

Table 1 – Sand N:S content in winter wheat grain in the regions of Kazakhstan

Region of Kazakhstan Latitude Longitude S, mg/kg N:S

min max min max

Ily (irrigated) 43°48ˈ 77°32ˈ 1511 1703 16,3 17,9

Ily (rained) 43°25ˈ 76°95ˈ 1421 1793 16,7 18,1

Kerbulak 44°88ˈ 77°95ˈ 1237 1393 16,9 18,1

Sarkand1 43°60ˈ 80°48ˈ 1151 1387 17,7 20,9

Sarkand 2 43°60ˈ 80°48ˈ 1200 1341 18,6 20,9

Zhambyl 42°85ˈ 71°38ˈ 1005 1310 17,9 20,3

Zelenovsky 51°25ˈ 51°28ˈ 1176 1643 14,6 19,0

Taldy-Kurgan 44°92ˈ 78°48ˈ 1118 1304 16,2 17,7

Zhana-Korgan 43°88ˈ 67°23ˈ 1060 1334 13,6 17,3

Sairam 1 42°42ˈ 69°83ˈ 1137 1679 14,2 16,7

Sairam 2 42°42ˈ 69°83ˈ 1256 1671 14,2 17,1

Saryagash 41°45ˈ 69°17ˈ 1320 1568 16,2 18,5

Georgiev 42°28ˈ 69°62ˈ 1219 1489 15,5 18,1

Lenger 42°28ˈ 69°62ˈ 1287 1818 14,8 18,3

Zhualin 42°72ˈ 70°83ˈ 1226 1442 14,7 17,1

Krasnogor 43°37ˈ 75°25ˈ 1118 1631 15,0 18,1

Figure 2 – Classificationof Kazakhstan winter common wheat regions on grain mineral content

Table 2 – Thecharacterization of winter wheat cultivars by S and N:S grain content, 2009-2014

Winter wheat Cultivars

S content in the grain,

mg/kg

frequency genotypes

of the S content, % N:Scontent Genotypes frequency with N:S attitude, % more

1800 mg/kg

less 1199 mg/kg

min max

min max 17-19 >19

Akterekskaya 1232 1617 16,1 17,7

Akdan 1047 1671 10 13,6 18,4 12

Aliya 1045 1681 34 16,1 20,3 28 27

Almaly 1055 1740 22 14,6 20,1 53 17

Bezostaya 1 1024 1630 38 15,8 19,4 64 9

Bogarnaya 56 1137 1596 20 16,1 18,3 40

Bonpen 1332 2066 11 16,8 17,0

Guadelupe 1071 1637 33 16,4 16,9

Egemen 1091 1680 – 17 14,2 19 11 11

Zhadyra 1199 1227 50 16,2 19,6 50

Zhetysu 1017 1642 40 16,6 19,7 62 13

Intensivnaya 1153 1638 3 14,8 18,1 50

Karlygash 1060 1308 50 14,9 17,6 33

Kazakhstanskaya 10 16,3 17,9 67

Karasay 1286 1650 14,6 16,3

Krasnovodopadskaya 90 1005 1667 46 15,8 20,2 11 11

Krasnovodopadskaya 97 1060 1631 17 15,7 20,5 11 22

Krasnovodopadskaya 210 654 1861 25 14,7 16,7

Mayra 1079 1703 16 14,9 20,3 31 12

Naz 1271 1643 14 19,9 30 20

Nureke 1044 1579 23 15,6 20,9 25 25

Odesskaya 120 1180 1387 25 16,8 20,1 25 25

Pamyat 47 1270 1598 14,4 16,9

Reke 1162 1688 10 15,5 19,8 60 30

Ramin 1176 1715 6 15,4 19,8 56 22

Sapaly 1221 1539 16,9 20,3 44 12

Steklovidnaya 24 1203 1508 15,9 20,9 60 7

Sultan 2 981 1793 29 16,8 17,7 67

Tungish 1311 1687 16,1 17,5 33

Erithrospermum 350 1415 1788 33 16,8 17,6 67

Yubileynaya 70 1270 1794 25 14,7 17,1 25

Two cultivars – Sultan2 and Erythrospermum350 in 33% cases are formed the level more than 1700 mg/kg, in 20-25% cases are Yubileinaya 70 and Pamyat 47cultivars, which are 4.8% of the total researched genofund. Less than 1100 mg/kg S formed in the cultivars grain: Intensivnaya (in 50% of cases), Pamyat 47 and Karasai (28%), Nureke, Yuzhnaya 12, Zhetysu and Akdan (in 13% of cases).S content isimportant for the formationof the protein compositionandgluten quality. Certainlydifferentsoil and climatic conditions, genotypicdifferencesof differentvarietiesof agroecotypescause, a wide range of variability inbothyield andprotein content. Inconnection with it, the role of information about theamountof protein andthe stabilityof its formationas a basis forglutencomplexis great.

To research therelationshipswithmajormacronutrientcontentandquality indicatorsselectedmaterial ofeach varietya few samplesin several (7-11) testregions. As a result ofa comprehensive studyof the

proteincomposition of thegrain of the winterwheatvarieties and hybridswith a maximum valueof proteinandstablebut average; for cultivars Erythrospermum 350, Yubileinaya70,Karasai. Cultivars Almaly, Naz, Pamyat47 and Intensivnayacharacterized by high(but not always stableregions) protein content.

Highly stablegliadin contentin grainvarietiesnoted for Erythrospermum350, Bezostaya1, Karasay.

Absolute maximum ofgliadin content markedoptional forcultivarsAlmaly, Zhetysu, Ramin, Odesskaya 120 andSapaly. As a highly stableglutenincontentstoodcultivar isSmuglyanka; andthe absolute maximum (35.5%) was characterized Ramincultivar.

The fact ofsynchronicityconsistently highprotein contentand its fractionsin the graincultivars Erythrospermum350, Egemen, Bezostaya1, Ramin, Zhetysuwithincreased accumulation ofiron and zinc, similar to those described previously. According tomultivariate statistical processing system installed correlation coefficients between the contentof Fe and Z nand individual macronutrients – Zn and Mg (+0.73); Cu and Fe (+0.73); Feand Zn (0.76); Znand P (I 0.74) atwithin specific regionsof cultivation.

Forregions characterized bydeficiency of sulfurin the grain the high correlation wasfound between sulfurand flourstrength (Figure 3).

Figure 3 – Correlationbetween the S andprotein, gluten content,flourstrength by alveograph(W), for winter wheat.

Quality characters were significantly correlated to both N and S concentration of grain, but for any given quality character the relationship was strongest with S concentration than with N concentration.

SDS and gluten quality parameter were correlated most strongly with both N and S grain concentration.

The alveograph W showed a high correlation with S concentration. Correlation between grain N and S concentration, on the contrary,was low, and this is confirmed by the wide variation of the N:S ratio in grain, ranging from 13,6 to 20,5. Lerner et al. [19] suggested that the amino acid composition of storage proteins changes with grain S concentration, so under high S availability the synthesis and accumulation of S-rich storage proteins is favoured at the expense of S-poor proteins. It is reasonable to suggest that these changes in protein composition may be at least in part responsible for the relatively major alterations in quality characters in response to S availability. These results are consistent with those from studies on bread wheat [14, 16].

Table 3 – Sgrain content ofintrogressiveforms winter wheat (example for 2006-2008)

Winter wheat introgressive forms S content (mg/kg) N:S

2006 2007 2008 2006 2007

231 (Bezostaya1 х Ae. cylindrica) х Karlygash 1674 1590 1674 16,9

1712 (Erithrospermum350 х Tr.militinae) 1889 1696 1920 16,9 14,8

1718 (F8(Erithrospermum 350 х Ae. cylindrica) х Erithrospermum 350) 1942 1643 1781 16,8 15,6 1721 ((F7Bezostaya 1 х Ae.triaristata)x Progress х (T.militinae)) 6 1798 1628-

1641 1758 18,1 15,6 1721 ((F7Bezostaya 1 х Ae.triaristata)x Progress х (T.militinae)) 9 1738 1647 1630 19,4 15,2 1721 ((F7Bezostaya 1 х Ae.triaristata)x Progress х (T.militinae)) 4 1769 1604 18,4 16,2 1723 ((F7Bezostaya 1 х Ae.cylindrica)x T.kiharae) х Tr.kiharaе) 1992 1999-

1757

1717-

1922 17,9 16,2

1676 (Steklovidnaya 24 х T.timophevi) 1761 1605 15,2 15,2

1674 (Zhetysu х (F7Zhetysu х T.kiharaе) хAlmaly) 1615 1801 1925 14,8 14,8

1680 (Steklovidnaya 24 х T.militinae) 1730 1737 18,3 16,3

1675 (Zhetysu х Tr.kiharaе) 1795 1838 17,3 16,5

1825 (Steklovidnaya 24 х Ae.cylindrica) 1866 1607 17,3 16,5

1727 (Erithrospermum 350 х T.kiharaе) 1825 1646 17,1 16,8

1671 (Zhetysu х T.militinae) 2285 2017-

1773

1899-

1866 13,7 17,8

Inthis context, provideinterest in other types of wheat. Firstly T.durum [3] andwild relatives, checklists are widely usedin the breeding process for adaptability and increase protein content (nutritional). There was 5 species of researched material: Aegilopscylindrica, Ae. triaristata, T.timopheevi, T.militinae, T.kiharae and constantline F7-F8 their crosses with commercial varieties of winter wheat in Kazakhstan (Figure 4).

Figure 4 – S content in the grain of winter wheat (left), and in a wild relatives (right)

The level ofSaccumulationin the wild relatives grainofcultivated formssignificantlylimit: Ae. Triaris- tata 2404-2565 mg/kg; Aegilopscylindrica 2164-2404 mg/kg; T.militinae 2190-2330 mg/kg; T.timopheevi

1841-2443 mg/kg; T.kiharae 2124-2205 mg/kg in comparisonwith the cultivarsin the range of 1452-1836 mg/kg. Constantlineby crossingwild relativeswas characterized byS containing,intermediate

betweenwild and cultivatedforms (Table 3). N: S ratioin these formsis optimal forwheatbread (no more than 17:1). Thus, the constant line can not only beadaptiveresourceformsa highprotein. N:S for wild wheat relatives from 12,4 to 15.4:1; for the cultivars from 14,8 to 16,7 in 2007 and from 16,0 to 18,6 in 2006 [20].

Conclusions. Commercial and perspective cultivars of winter common wheat and regions of their cultivation are analyzed and classified under the maintenance of sulfur (1005 up to 1818 mg/kg) and to balance N:S (from 13,6 up to 20,9).

Wild relatives arecharacterized as a high potential on mineral content in grain, also in S content and the other elements.

Acknowledgments. For Dr. Kozhahmetov K.K. for providing materials of wild relatives in Kazakhstan.

REFERENCES

[1] Abugalieva A.I., Nadirov B.T., PeruanskiyYu.V. (1987) Similarities and differences biotypes wheat content of disulfide bonds in gliadin. Seria.Biol. 3:35-37.

[2] Yan S., Dai Z., Chen X., Yang B., Xu F., Shao Q., Zhang C., Li W. (2016) Effects of sulphur fertilizer on gluten in macropolymer content and practicle size distribution in wheat grain,Vol. 62, 2016, No. 1: 9–15Doi: 10.17221/575/2015-PSE

[3] Laura Ercoli, Leonardo Lulli, Iduna Arduini, Marco Mariotti, Alessandro Masoni (2011) Durum wheat grain yield and quality as affected by S rate under Mediterranean conditions. Europ. J. Agronomy 35:63–70.

[4] Salvagiotti F., Castellarin J.M., Miralles D.J., Pedrol H.M. (2009) Sulfur fertilization improves nitrogen use efficiency in wheat by increasing nitrogen uptake. Field Crops Res. 113, 170-177.

[5] de Ruiter J.M., Martin R.J. (2001) Management of nitrogen and sulphur fertilizer for improved bread wheat (Triticumaestivum) quality. N Z J. Crop Hortic. Sci. 29, P. 287-299.

[6] Garrido-Lestache E., Lopez-Bellido R.J., Lopez-Bellido L. (2005) Durum wheat quality under Mediterranean conditions as affected by N rate, timing and splinting, N from and S fertilization. Eur. J.Agron. 23. P.265-278.

[7] Cakmak D., Blagojevic S., Stevanovic D., Jakovljevic M., Mrvic V. (2009) Effect of sulphur fertilization on wheat yield and on nutrient grain content on chernozem in Serbia. Agrochimica. №2, P. 92-100.

[8] Dostalova Y., Hrivna L., Kotkova B., Buresova I., Janeckova M., Sottnikova V. (2015) Effect of nitrogen and sulphur fertilization on quality of barley protein. Plant. Soil and Environment, 61:399-404.

[9] Hřivna L.,Kotková B., Burešová I. (2015) Effectofsulphurfertilization on yield and quality of wheat grain. Cereal Research Communications, 43:344–352.

[10] McGrath S.P., Zhao F.J., Withers P.J.A. (1996) Development of sulphur deficiency in crops and its treatment.

Peterborough, 379.

[11] Zhao F.J., Hawkesfordt M.J., McGrath S.P. (1999) Sulphur Assimilation and Effects on Yield and Quality of Wheat.

J.Cereal Sci. 30: P.1-17.

[12] Wooding A.R., Kavale S., Wilson A.J., Stoddard F.L. (2000) Effects of Nitrogen and Sulfur Fertilization on Commercial-Scale Wheat Quality and Mixing Requirements. Cereal Chem. 77(6):791-797.

[13] Flaete N.E.S., Hollung K., Ruud L., Sogn T., Faergestad E.M., Skarpied H.J., Magnus E.M., Uhlen A.K. (2005) Combined nitrogen and sulphur fertilization and its effect on wheat quality and protein composition measured by SE-FLPC and proteomics. J.Cereal Sci. 41, 457-369.

[14] Randall P.J., Wrigley C.W. (1986) Effects of sulfur supply on the yield, composition, and quality of grain from cereals, oilseeds, and legumes. Advances in Cereal Sci. and Tech. Vol.8:171-206.

[15] MacRitchie F., Gupta R.B. (1993) Functionality-composition relationships of wheat flour as a result of variation in sulfur aviability. Aust.J.Agric.Res. 44, 1767-1774.

[16] Zhao F.J., Salmont S.E., Withers P.J.A., Monaghan J.M., Evans E.J., Shewry P.R., McGrath S.P. (1999) Variation in the Breadmaking quality and Rheological Properties of Wheat in Relation to Sulphur Nutrition under Field Conditions. J. Cereal Sci. 30:19-31.

[17] Wieser H., Gutser R., von Tucher S. (2004) Influence of sulfur fertilization on quantities and proportions of gluten protein types in wheat flour. J.Cereal Sci. 40, 239-244.

[18] Dupont F.M., Hurkman W.J., Vensel W.H., Chan R., Lopez R., Tanaka C.K., Altenbach S.B. (2006) Differential accumulation of sulfur-rich and sulfur-poor wheat proteins is affected by temperature and mineral nutrition during grain development. J.Cereal Sci. 44. P. 101-112.

[19] Lerner S.E., Seghezzo M.L., Molfese E.R., Ponzio N.R., Cogliatti M., Rogers W.J. (2006) N- and S-fertiliser effect on grain composition, industrial quality and end-use in durum wheat.j.Cereal Sci. 44, 2-11.

[20] Abugalieva A.I., Savin T.V., Kozhahmetov K.K., Cakmak I. (2013) Variation in Iron Concentrations among Wild Wheat Relatives and Their Hybrids with Commercial winter varieties. XVII International Plant Nutrition Colloquium & Boron Satellite Meeting, 19-22 August, 2013. Istanbul. Turkey. P. 1028-1029.

A. И. Абугалиева1,3, И. Чакмак2, А. И. Моргунов3, Т. В. Савин4

1Казахский научно-исследовательский институт земледелия и растениеводства, Алмалыбак, Казахстан,

2Университет Сабанчи, Стамбул, Турция,

3СИММИТ, Анкара,Турция,

4Казахский национальный аграрный университет, Алматы, Казахстан КЛАССИФИКАЦИЯ ГЕНЕТИЧЕСКИХ РЕСУРСОВ

КАЧЕСТВА ЗЕРНА ОЗИМОЙ ПШЕНИЦЫ

ПО СОДЕРЖАНИЮ СЕРЫ И СОСТОЯНИЮ АЗОТА И СЕРЫ

Аннотация. Цель исследований: определениестатусасеры (содержание S и отношение N:S) в зерновом бизнесе для перспективных сортов озимой пшеницы в Казахстане. Материалы: 750 образцов зерна озимой пшеницы различных сортов из 14 регионов Казахстана урожая 2009-2014. Регионы возделывания озимой пшеницы характеризовались содержанием серы вЖамбылскомрегионе в диапазоне от 1130 мг/кг (на уровне

дефицита), иТалдыкоргане до максимального 1640 мг/кг; для региона Илийскийпо отношению N:S от 14.9:1 (Сайрам) до 19,6:1 (Сарканд). Уровень накопления S в диких сородичах находится в пределах: Ae. Triaristata 2404-2565 мг/кг; Ae.cylindrica 2164-2404 мг/кг; T.militinae 2190-2330 мг/кг; T.timopheevi 1841-2443 мг/кг;

T.kiharae 2124-2205 мг/кг в сравнении с сортами в пределах диапазона 1452-1836 мг/кг. Линии, скрещенные с дикими сородичами, занимали промежуточное положение между дикими и культурными формами пшеницы по содержанию S, соотношение N:S в этих формах оптимально для пшеничного хлеба (не более 17: 1). Таким образом, константные линии могутне только образовать адаптивный ресурс с высоким содержанием белка, но и серы. Коммерческие и перспективные сорта озимой мягкой пшеницы и регионы их выращивания клас- сифицируются по содержанию серы от 1005 мг/кг до 1818 мг/кг и баланса N:S от 13,6 до 20,9.

Ключевые слова: пшеница, дикие сородичи, качество, сера, азот/сера.

А. І. Əбуғалиева1, 3, И. Чакмак2, А. И. Моргунов3, Т. В. Савин4

1Қазақ егіншілік жəне өсімдік шаруашылығы ғылыми зерттеу институты, Алмалыбақ, Қазақстан,

2Сабанчи университеті, Стамбул, Түркия,

3СИММИТ, Анкара, Түркия,

4Қазақ ұлттық аграрлық университеті,Алматы, Қазақстан КҮЗДІК БИДАЙ ДƏНІНІҢ ҚҰРАМЫНДАҒЫ КҮКІРТ ЖƏНЕ

АЗОТ ПЕН КҮКІРТТІҢ ЖАҒДАЙЫ БОЙЫНША

ГЕНЕТИКАЛЫҚ РЕСУРС САПАСЫН КЛАССИФИКАЦИЯЛАУ

Аннотация. Зерттеу мақсаты: Қазақстанда келешекті күздік бидай сорттары үшін астық өнеркəсібінде күкірт жағдайын (S құрамы жəне N:S қатынасынанықтау. Зерттеу əдістерімен материалдары: Қазақстанның 14 ауданынан 2009-2014 жж. өнім күздік бидайының түрлі сорттарынан 750 түр. Күздік бидайды өсіріп- өндіру аудандарында құрамындағы күкірт Жамбыл ауданында 1130 мг/кг. (жеткіліксіз деңгейінде), Талды- қорғанда максималды 1640 мг/кг дейін; N:S қатынасы бойынша 14.9:1-ден (Сайрам) 19.6:1 (Сарқанд) дейін сипатталды. Жабайы туыстарда S жинақталу деңгейі Ae. Triaristata 2404-2565 мг/кг; Ae.cylindrica 2164- 2404 мг/кг; T.militinae 2190-2330 мг/кг; T.timopheevi 1841-2443 мг/кг; T.kiharae 2124-2205 мг/кг, сорттармен салыстырғанда 1452-1836 мг/кг диапазон аралығында болды. Жабайы туыстармен будандастырылған қата- лар S құрамы бойынша бидайдың жабайы жəне мəдени түрлер арасындағы аралық жағдайда, N:S қатынасы бидай наны (17:1 көп емес) үшін қалыпты жағдайда. Сонымен, константты түрлер тек жоғары құрамды белокты бейімделгіш ресурс түзбейді. Күздік жұмсақ бидайдың коммерциялық жəне келешекті сорттарымен оларды өсіп-өндіру аудандары құрамындағы күкірт (1005-1818 мг/кг) жəне N:S (13.6-20.9) балансы бойынша жүйеленеді.

Түйін сөздер: бидай, жабайы туыстар, сапа, күкірт, азот/күкірт.

BULLETIN OF NATIONAL ACADEMY OF SCIENCES OF THE REPUBLIC OF KAZAKHSTAN

ISSN 1991-3494

Volume 2, Number 366 (2017), 39 – 54

UDC 796.062

V. N. Avsiyevich

Kazakh academy of sports and tourism, Almaty, Kazakhstan.

E-mail:qwer75tyu@mail.ru

In document Х А Б А Р Ш Ы С Ы (бет 31-39)

Outline

СӘЙКЕС КЕЛЕТІН ҚҰЖАТТАР