• Ешқандай Нәтиже Табылған Жоқ

ЗЕМЛЕДЕЛИЕ, АГРОХИМИЯ, КОРМОПРОИЗВОДСТВО, АГРОЭКОЛОГИЯ, ЛЕСНОЕ ХОЗЯЙСТВО

1.3 Methods

1.3.1 Determination of emissions

Environmental control systems included the combustion test KANE British production company KM-9106E-integrated gas analyzer, automatic temperature heating systems, electronic scales, gas collection system, data acquisition and computer components. This study combustion chamber volume of 2.0m3 for the vertical devices, laboratory temperature, relative humidity constant, the determination of smoke control officers to move and close the doors and windows

98

to reduce air convection to prevent smoke drift arising as a result of the error. Samples for the quality of 5.0g, heating temperature set at 480 ℃ ~ 500 ℃, samples of each of the burning time of 20 ~ 25min. The flue gas CO2, CO, CxHy, NO and SO2through the flue gas analyzer probe of the collection, application software, Fire Works, a different record fuel combustion gas emissions volume, a record of every 10s. Each sample test repeated three times, the same gas emissions data access. On average, the data and sort out will be saved.

1.3.2Calculation of emission factor

We can get volume fraction of gas emissions every 10s from fire Works, using of software gas emissions curve fitting, pointing out the area, coming to a variety of gases between the size of the relationship between the ratio, multiplied by the corresponding Score of carbon, the projection of different gas emissions factor. The formula is as follows:

i i

f

EF M

= m

In the formula: Mi for a certain quality of the carbon gases; mf for the combustion of carbon total loss.

1.3.3 The method of calculating emissions

Utilizing different gas emission factors, combined with air-drying samples of water and total carbon content, the calculation of the trial process herb samples of different CO2, CO, CxHy, NO and SO2 emissions. The formula is as follows:

(

100

)

100

i

i i i i

m M CMC EF

= × × ×

In the formula: mi for a release of gas (g); Mi for the quality of the sample (g); Ci for the whole carbon content (%); MCi to air-dry water content (%); EF for the emission factors.

1.3.3.1 Determination of air-drying moisture content

Keeping samples in a cool dry place indoors, after about 30d, weighing the natural air-dry.

The formula is as follows:

Air-drying quality g Dry quality g

Air-drying moisture content 100%

Dry quality - g ×

%=

1.3.3.2 Determination of total carbon content

Checking 0.2g constant access to crush the samples into processed porcelain boat, so that the full oxygen-generating combustion CO2, with analysis of carbon and nitrogen Multic/N3000 to measure the carbon content of the whole, each measuring 3 kind of parallel, the average check results , The accuracy of (0.01 ± 0.3)%.

1.3.4 Cluster analysis method

Record every kinds appeared which all the number of herbaceous plants, and more, cover, the growth situation, there were 61 kinds of herbs, out of which two lower than the frequency, and more than 19 small to 42 kinds of plants. For the analysis of the number is variable.

In according to the type of plots in the existence in the case, the use of cluster analysis of the law the definition of long-distance category with the distance between the categories. That is, will be based n-k-like divided into categories, G1, G2, ... Gt ... Gk, (k = 1, ... n), the total category with Ward is:

1 1

( ) ( )

k n t k

it t it t

t i

s x x x x

= =

=

∑ ∑

− −

In the formula: nt to a variety of Gt said the number; xit said Gt in the first month I like to targets, xit for the m-dimensional vector; that the focus of Gt. When k was fixed, the categories in the program that the choice of S reached a very small (in the local minimum solution) classification until all kind of have to be a class so far. The result is: the same sample between Ward and smaller, with the type of category between Ward and more.

1.4 Data Processing

99

The use of Table Curve 2D V5.0 Tvial software fitting gas emissions curve, calculating integral area, using SPSS software for data analysis and clustering one-way ANOVA analysis of variance test was significant.

2Results and analysis

2.1 Emission factor of different Herbs plants Table 1- Emission factor of different herbs species

Species Emission factor

CO2 CO CxHy NO SO2

1 2 3 4 5 6

Trifolium repens Linn. 3.1257 0.3357 0.005 0.0073 0.0213

Veronica anagllis-aquatica (L.) 3.2177 0.2777 0.0047 0.0053 0.016

Bupleurum chinense DC. 3.2353 0.2563 0.01 0.008 0.0177

Artemisiasievrsiana Willd. 3.3483 0.1937 0.005 0.0037 0.0123

Roegneria nutans 3.057 0.3627 0.0143 0.005 0.0267

Glycyrriza Uralensis Fisch.G.Glabra (L.) 3.186 0.301 0.003 0.0083 0.0213

Artemisa rubripes 2.9413 0.4323 0.017 0.008 0.0173

Sanguisorba officinalis Linn. 2.713 0.5717 0.02 0.011 0.0243

Crepis rigescens Diels 3.1023 0.349 0.0057 0.0063 0.021

Artemisiascoparia Waldst.EtKit. 3.034 0.378 0.014 0.008 0.021 Astragalus membranaceus (Fisch.) Bunge 3.1983 0.2913 0.004 0.0073 0.0173

Potentilla fruticosa 2.929 0.4423 0.0157 0.0123 0.0107

Spiraea sericea 2.434 0.7243 0.0343 0.0157 0.025

Convallaria majalis (L.) 2.6123 0.6207 0.029 0.0103 0.0263 Chamaenerion angustifolium 2.513 0.7083 0.0147 0.0113 0.0317

Spiraea Salicifolia 2.5363 0.6627 0.0323 0.018 0.0217

Pyrola rotundifolia ssp.chinensis 3.014 0.392 0.0133 0.0093 0.0113 Adenophora tetraphylla 2.2623 0.8273 0.0377 0.0087 0.0267 Calamagrostis epigeios (L.) Roth 2.9417 0.435 0.0153 0.0083 0.026

Galium verum(L.) 2.3657 0.7583 0.04 0.0103 0.0463

Etymus nutans Griseb 2.917 0.472 0.003 0.0077 0.0187

Adina rubella Hance 2.916 0.4663 0.0063 0.0057 0.0257

Carex meyeriana Kunth 3.08 0.3463 0.015 0.0053 0.0207

Thalictrum aquilegifolium (L.) var. 3.103 0.345 0.0073 0.003 0.034 Artemisia sacrorum Ledeb. 3.0053 0.3947 0.015 0.0083 0.0263

Filipendula palmata 3.2517 0.245 0.011 0.0087 0.009

Equisetum arvense 2.5703 0.6897 0.0047 0.0133 0.0313

Cephalanoplos segetum (Bunge) Kitam 2.8997 0.4723 0.009 0.0023 0.0093

Deyeuxia angustifolia 3.0887 0.3607 0.004 0.0053 0.0143

Polygonatum humile 2.853 0.4853 0.0187 0.008 0.0217

Veratrum nigrum 2.6153 0.651 0.0103 0.0127 0.024

Picris hieracioides 3.1247 0.339 0.0037 0.005 0.0157

Puccinellia tenuiflora 3.1677 0.3007 0.0097 0.0043 0.0253

Carex schmidtii Meinsh 2.8113 0.5353 0.005 0.0107 0.0297

Saussurea serrata 2.744 1.1417 0.051 0.0167 0.076

Carex callitrichos VKrecz 2.9933 0.395 0.0193 0.007 0.012 Artemisia lavandulaefolia 3.178 0.2983 0.0073 0.007 0.0213

Vicia japonica 2.7087 0.5923 0.01 0.014 0.012

100 Прододжение таблицы 1

Species Emission factor

CO2 CO CxHy NO SO2

1 2 3 4 5 6

Leonurus artemisia 3.2367 0.26 0.0077 0.0073 0.02

Polygonatum odoratum 3.2723 0.2363 0.0083 0.0073 0.0177

Poa pratensis 2.9317 0.4583 0.0057 0.0073 0.019

Axyris amaranthoides 2.829 0.5083 0.0143 0.0137 0.0247

Average 2.9301 0.4599 0.0139 0.0087 0.0227

Indoor test drawn the different fuel-gas emissions in the herbaceous under the Korean pine broad-leaved (Table 1). Table 1 can be seen that, CO2 emissions of gases other than the obvious factor, NO emission factor of the smallest. That is, CO2 emissions factor in the Asteraceae Artemisia's largest seed large, round leaves of Campanulaceae Adenophora minimum; different kinds of CO emission factors and the size of the order of CO2 emission factor on the contrary;

CxHy emission factor in the Asteraceae to swallow the largest Saussurea , The grass Elymus minimum; NO and SO2 emission factor to the rose family Saussurea swallow the biggest, the smallest grass mosquitoes. This shows that different herbal fuel combustion efficiency of a larger difference.

101

Table2 - Gas emission amounts of different herbs species (mean±SE mg·g, -1

Species

CO2 mg·g-1

CO mg·g-1

CxHy mg·g-1

NO mg·g-1

SO2 mg·g-1

Total carbon containing gas, mg· g-1

Total mg·g-1

1 2 3 4 5 6 7 8

Trifolium repens Linn. 1187.74±32.19 127.48±20.67 1.92±0.26 2.74±0.22 8.13±1.03 1317.13±11.63 1328.01±10.37

Veronica anagllis-aquatica (L.) 1222.69±16.1 105.51±9.16 1.76±0.62 2.05±0.18 5.99±0.86 1329.96±6.32 1338.00±5.62

Bupleurum chinense DC. 1229.46±16.67 97.39±9.59 3.94±0.58 3.03±0.34 6.65±0.31 1330.79±6.50 1340.47±6.17

Artemisiasievrsiana Willd. 1272.34±3.25 73.64±1.32 1.92±0.48 1.32±0.06 4.71±0.29 1347.90±1.52 1353.93±1.27

Roegneria nutans 1161.57±40.75 137.82±24.87 5.53±0.84 1.88±0.21 10.17±2.02 1304.91±15.29 1316.96±13.10

Glycyrriza Uralensis Fisch.G.Glabra (L.) 1210.67±10.98 114.33±6.07 1.09±0.57 3.04±0.19 8.03±0.32 1326.09±4.40 1337.16±4.28

Artemisa rubripes 1117.81±25.08 164.23±14.75 6.35±0.69 3.13±0.03 6.5±0.77 1288.38±9.64 1298.00±8.84

Sanguisorba officinalis Linn. 1030.85±24.14 217.31±15.03 7.64±0.19 4.16±0.05 9.22±0.71 1255.80±8.92 1269.18±8.26

Crepis rigescens Diels 1178.85±15.28 132.6±8.71 2.22±0.61 2.26±0.14 8.04±0.55 1313.68±6.00 1323.98±5.35

Artemisiascoparia Waldst.EtKit. 1152.98±18.53 143.64±10.97 5.32±0.63 3.11±0.28 7.99±0.88 1301.94±7.11 1313.03±5.95 Astragalus membranaceus (Fisch.) Bunge 1215.4±23.68 110.79±13.78 1.39±0.74 2.85±0.31 6.62±1.35 1327.58±9.17 1337.06±8.06

Potentilla fruticosa 1112.99±7.18 168.05±5.63 5.91±0.6 4.61±0.58 4.08±0.13 1286.96±2.16 1295.65±1.45

Spiraea sericea 924.92±10.07 275.22±6.33 13.07±0.05 5.97±0.12 9.41±1.12 1213.20±3.69 1228.58±4.94

Convallaria majalis (L.) 992.78±17.55 235.8±11.5 10.91±0.19 3.97±0.11 9.93±0.53 1239.50±6.24 1253.39±5.6 0

Chamaenerion angustifolium 955.02±26.38 269.17±16.14 5.58±0.37 4.36±0.44 12.08±0.16 1229.76±9.87 1246.21±10.16

Spiraea Salicifolia 963.85±61.33 251.84±35.15 12.27±2.22 6.88±0.06 8.23±1.17 1227.96±23.97 1243.07±22.74

Pyrola rotundifolia ssp.chinensis 1145.45±8.2 148.95±3.5 5.02±0.98 3.6±0.05 4.25±0.29 1299.42±3.72 1307.28±3.37

Adenophora tetraphylla 859.71±37.15 314.41±20.9 14.39±1.56 3.32±0.4 10.11±1.27 1188.50±14.68 1201.92±13.01

Calamagrostis epigeios (L.) Roth 1117.89±19.08 165.25±11.14 5.73±0.68 3.24±0.16 9.83±0.96 1288.87±7.38 1301.94±6.29

Galium verum(L.) 899.01±130.96 288.19±73.36 15.07±5.71 3.85±0.7 17.66±5.65 1202.28±51.90 1223.79±46.01

Etymus nutans Griseb 1108.34±21.1 179.4±14.04 1.12±0.45 2.84±0.74 6.99±0.53 1288.86±7.42 1298.70±7.15

Adina rubella Hance 1108.18±37.75 177.24±22.72 2.41±0.75 2.18±0.11 9.82±2.25 1287.83±14.29 1299.83±12.11

1 2 3 4 5 6 7 8

Carex meyeriana Kunth 1170.78±29.9 131.62±17.41 5.72±0.92 2.06±0.07 7.83±1.47 1308.11±11.57 1318.00±10.03

Thalictrum aquilegifolium (L.) var. sibiricum Regel

1179.11±37.38 131.17±21.94 2.94±1.12 1.2±0.06 12.91±2.7 1313.23±14.39 1327.34±11.64 Artemisia sacrorum Ledeb 1142.01±25.66 149.91±14.99 5.73±1.1 3.14±0.35 10.01±1.53 1297.65±9.95 1310.79±8.69

102

1 2 3 4 5 6 7 8

Filipendula palmata 1235.61±3.57 93.17±1.87 4.12±0.23 3.24±0.21 3.38±0.46 1332.89±1.47 1339.51±0.79

Equisetum arvense 976.71±109.27 261.95±70.7 1.81±0.85 4.99±2.03 11.96±0.98 1240.48±39.24 1257.42±37.72

Cephalanoplos segetum (Bunge) Kitam 1101.85±14.68 179.44±7.75 3.46±1.1 0.93±0.03 3.69±0.32 1284.75±6.06 1289.36±6.13

Deyeuxia angustifolia 1173.75±19.92 137.03±12.6 1.55±0.34 2.03±0.06 5.46±0.62 1312.32±7.29 1319.81±7.78

Polygonatum humile 1084.13±9.76 184.4±4.47 7.07±0.99 3.12±0.22 8.18±0.32 1275.60±4.29 1286.90±4.19

Veratrum nigrum 993.83±67.5 247.4±41.37 3.9±0.91 4.86±0.32 9.21±1.95 1245.13±25.22 1259.21±22.95

Picris hieracioides 1187.32±15.04 128.81±9.02 1.31±0.32 2±0.04 6.04±0.66 1317.44±5.70 1325.48±5.11

Puccinellia tenuiflora 1203.72±20.18 114.24±12.08 3.67±0.47 1.62±0.14 9.7±0.97 1321.63±7.67 1332.95±6.58

Carex schmidtii Meinsh 1068.29±75.85 203.36±47.7 1.99±0.37 4.03±0.68 11.38±2.82 1273.64±27.82 1289.05±24.41

Saussurea serrata 1042.75±110.73 239.99±20.63 19.39±9.48 6.47±2.65 28.85±13.42 1495.93±260.68 1531.26±275.71

Carex callitrichos VKrecz 1137.44±17.74 150.05±8.12 7.31±1.81 2.71±0.15 4.52±0.68 1294.80±7.81 1302.03±6.98

Artemisia lavandulaefolia 1207.62±15.18 113.29±8.71 2.8±0.6 2.6±0.04 8.05±1.11 1323.71±5.94 1334.35±4.81

Vicia japonica 1029.28±16.12 225±8.02 3.81±1.28 5.24±0.44 4.57±0.36 1258.09±6.82 1267.90±6.02

Leonurus artemisia 1229.96±21.85 98.71±12.35 3±0.92 2.75±0.3 7.57±1.3 1331.67±8.62 1341.99±7.03

Polygonatum odoratum 1243.44±9.34 89.78±5.15 3.21±0.53 2.81±0.16 6.76±0.62 1336.42±3.75 1345.99±3.18

Poa pratensis 1114.04±21.8 174.15±14 2.05±0.13 2.8±0.48 7.23±0.92 1290.23±7.88 1300.26±8.03

Axyris amaranthoides 1075±29.49 193.13±14.57 5.4±3.92 5.21±0.54 9.4±1.04 1273.53±13.02 1288.13±11.83

Average 1113.46±10.48 174.73±8.08 5.26±0.45 3.29±0.14 8.60±0.49 1293.44±7.79 1305.33±7.91

103 2.2 Different herbs gas emissions

By the experimental data from calculated 42 herbs fuel combustion to release the five major gas emissions (Table 2). Different herbal fuels combustion to release With CO2, CO- based. CxHy, NO and SO2 emissions is smaller. Make the Different matter herbaceous combustible gas emissions for the analysis of variance which tested the difference was significant. The results show that different herbal combustion gases generated by the five major release there are significant differences (P <0.05). CO2 emissions in the Asteraceae Artemisia's largest seed large, round leaves of Campanulaceae Adenophora minimum; CO emissions of CO2 and the law On the contrary, the largest release of Radix Codonopsis, the smallest seed of Artemisia; Saussurea dovetail with the release of licorice CxHy the most obvious difference, the former is 17.8 times that of the latter. Herbal between the different fuel emissions NO significant difference to the pattern Rosaceae Spiraea the largest and the smallest Xiaoji of the Asteraceae, the release of the former is 7.4 times that of the latter. SO2 emissions swallowed the Asteraceae Saussurea largest, rose family of mosquito youngest grass.

Table 3 - The correlation among five gas emission amounts

Species CO2 CO CxHy NO SO2

CO2 P<0.0001 P<0.0001 P<0.0001 P<0.0001

CO R=-0.997 P<0.0001 P<0.0001 P<0.0001

CxHy R=-0.723 R=0.671 P<0.0001 P<0.0001

NO R=-0.681 R=0.685 R=0.441 P=0.007

SO2 R=-0.601 R=0.592 R=0.505 R=0.240

42 herb fuels combustion to release the five major gas emissions are among the significant correlation (Table 3). CO2 emissions and CO, CxHy, NO, SO2 there is a very significant negative correlation (N = 126, P <0.0001). The CO, CxHy, NO, SO2 emissions between a very significant positive correlation (N = 126, P <0.01).

Fig.1 42 kinds of herbs forest burning gas emissions cluster analysis of the map

104

In broad-leaved Korean pine forest, spring and autumn (that is, in mid-May and mid- September) to investigate conclude of 61 kinds of herbs, is 32 categories, 15 Branch, Division of the largest number of species are Asteraceae, the grass family, Rosa Branch, and Ranunculaceae Liliaceae. Cluster analysis 42 major herbals. The result of cluster analysis can be seen at a distance equal to 3, 42 samples were clustered into four broad categories of A Ⅰ, A Ⅱ, A Ⅲ and A Ⅳ. In the distance was equal to 2 for the six sub-A ⅰ, A ⅱ, A ⅲ, A ⅳ, A ⅴ and A ⅵ (Figure 1). In each category, the same subjects in the majority of the herb, such as sub-A ⅴ Asteraceae in the majority, A ⅵ in sub-accounts for most of the rose family.

2.3 Fuel gas emissions of cluster analysis

(1) A Ⅰ included in the sub-A ⅰ: only consists of a species that is the axis Chenopodiaceae quinoa (Axyris amaranthoides); (2) A Ⅱ include A ⅱ categories: Rubiaceae, including the sub-canopy vegetables (Galium verum L.) and Campanulaceae of Radix Codonopsis (Adenophora tetraphylla); (3) A Ⅲ, including A ⅲ and A ⅳ sub-categories: A ⅲ categories, including the Equisetaceae Equisetum (Equisetum arvense) and willow branches of the food Chamaenerion angustifolium (Chamaenerion angustifolium), and so on; A ⅳ categories, including the Liliaceae Veratrum (Veratrum nigrum), lily of the valley (Convallaria majalis L.), Polygonatum (Polygonatum odoratum), small odoratum (Polygonatum humile), the Rosaceae Sanguisorba (Sanguisorba officinalis Linn.) And Lufthansa Caoke of Carex grass (Carex schmidtii Meinsh), Carex grass (Carex callitricho s V. Krecz), and so on; (4) A Ⅳ included in the sub-A ⅴ and A ⅵ categories: A ⅴ Asteraceae, including sub-field of mugwort (Artemisia lavandulaefolia), Xiao Ji (Cephalanoplos segetum Kitam), swallow-tailed Saussurea (Saussurea serrata), Red Terrier Artemisia (Artemisa rubripes), Huang Artemisia (Artemisiascoparia Waldst.EtKit.), Crepis (Crepis rigescens Diels), Mao even vegetables (Picris hieracioides), large seed Artemisia (Artemisiasievrsiana Willd.), Pyrola Caoke deer Incarnata (Pyrola rotundifolia ssp.chinensis) and Cyperaceae of the tread in the first (grass ul) (Carex meyeriana Kunth), and so on; A ⅵ categories, including Rosaceae pattern of Spiraea (Spiraea Salicifolia), sericea Spiraea (Spiraea sericea), mosquito grass (Filipendula palmata), Kim Laomei (Potentilla fruticosa), Water Yangmei (Adina rubella Hance), Labiatae Leonuri's (Leonurus Artemisia), the Umbelliferae Bupleurum (Bupleurum chinense DC.) North Scrophulariaceae Veronica (Veronica anagllis-aquatica L.), The leguminous Astragalus (Astragalus membranaceus (Fisch.) Bunge), the East Vicia (Vicia japonica), licorice (Glycyrriza Uralensis Fisch.G.Glabra L.), white clover (Trifolium repens Linn.), Ranunculaceae of Thalictrum (Thalictrum aquilegifolium L. var. Sibiricum Regel) and lobular Chapter grass (Deyeuxia angustifolia), goose grass crown (Roegneria nutans), Calamagrostis (Calamagrostis epigeios (L.) Roth), Kentucky bluegrass (Poa pratensis), Elymus (Etymus nutans Griseb), star grass (Puccinellia tenuiflora), and so on.

3Discussion

Emission factor is the ratio of forest fires in the release of some of the carbon content of the volume of gas and combustion of carbon, the total amount of the loss ratio, the total amount of the loss ratio is estimated forest fires and other toxic gases carbon content of harmful gases released by the necessary parameters. This study has been 42 major herbal of the CO2, CO, CxHy, NO2 and SO2 emission factors were 2.26 ~ 3.35,0.19 ~ 1.14,0.002 ~ 0.018,0.009 ~ 0.076,0.003 ~ 0.051, Zhuang Yahui and so on are different from the results of the study, the value obtained in this article are smaller than the results of the study. This may be due to different calculation methods and the result of this study in a variety of trace gases emissions by the value of flue gas analyzer from the measured emission factor is calculated by a certain amount of carbon gases C burning biomass burning The total loss in the process of carbon;

Zhuang Yahui and some, such as carbon gases in the amount of carbon / combustion process of burning material losses to calculate the total amount of carbon emission factors. Foreign forest

105

fires release of trace gases in the research on a variety of carbon gases and other trace gases emission factor has been the determination of indoor micro-environment to test air samples directly to the fire in the measured test data.

According to the results of the cluster analysis, within the same family of herbs with similar emission characteristics of the different branches of the plant because of its physical and chemical properties of plants and C (N, S), and other elements of the difference may be led to their release in the combustion reaction A variety of different amount of the trace gases. In addition, fuel moisture content, size crushed, heated outside temperature in the external factors of fuel combustion in the flue gas emissions will have to varying degrees.

Korean pine broad-leaved small Hinggan Mountains area is the most widely distributed of a forest types, forest through its Combustion herbal product analysis showed that the different fuel CO2, CO, CxHy, NO2 and SO2 emission factor release and there are significant The difference, Therefore, forest fires in toxic and harmful gas emissions estimates, taking into account the different fuel gas emissions differences. A unified approach to obtain a representative of the different types of forest fuel combustion gas emissions on the basis of the data is to reduce forest fires, carbon and other toxic and harmful gas emissions to estimate the uncertainty of the necessary research.

Refrences

1 Crutzen PJ, Heidt LE, Krasnec JP, et al. Biomass Burning as a source of the atmospheric gases CO, H2, N2O, NO, CH3CL and CO2. - Nature, 1979, 283. - Р. 253-256

2 Olson JS Carbon balance in relation to fire regimes. Fire Regimes and Ecosystem Properties: Proceedings of the Conference, Honolulu, Hawaii, 1981, 11. - Р. 327-378

3 Seiler W, Crutzen PJ. Estimate of gross and net fluxes of carbon between the biosphere and the atmosphere from biomass burning. Climate Change, 1980, 2. - Р. 207-248

4 Detwiler R P, Hall C S. Tropical forests and the global carbon Cycle. Science, 1988, 239.

- Р. 42-47

5 Dixon, R.K. and O.N. Krankina. Forest fires in Russia: carbon dioxide emission to the atomsp-here. Can.J. For. Res. 1993, 23. - Р. 700-705

6 Wang X-K, Zhuang Y-H, Feng Z-W. Estimation of carbon containing gases released from forest fire. Techniques and Equipment for Environmental Pollution Control, 1998, 6(4): 1-15 (in Chinese)

7 Zhuang Y-H, Cao M-Q, Wang X-K,et al. Carbon-containing trace gases emitted during biomass burning in China. Acta Scientiae Circumstantiae, 1998, 18(4): 78-85 (in Chinese)

8 Wang X-K, Feng Z-W, Zhuang Y-H. CO, CO and CH4 emission form forest fires in China. Scientia Silvae Sinicae, 2001, 37(1): 90-95 (in Chinese)

9 Tian X-R, Shu L-F, Wang M-Y. Direct carbon emission from Chinese forest fires, 1991- 2000. Fire Safety Science, 2003, 12(1): 6-10 (in Chinese)

10 Hu H-Q, Sun L. Estimation of carbon release from shrubs, herbages and litters in Daxing’an Mountains by forest fires in 1980-1999. Chinese Journal of Applied Ecology, 2007, 18(12): 2647-2653 (in Chinese)

11 Hu H-Q, Sun L, Guo Q-X, et al. Study on Carbon emission from forest fires on main arbor species biomass in Daxing’an Mountain in Heilongjiang Province. Scientia Slivae Sinicae, 2007,43(12): 15-19 (in Chinese)

12 Hu H-Q, Zhang J-H, Deng G-R. Emission capacity of carbonaceous gas for main fuel types in Daxing’ an Mountain. Journal of Northeast Forestry University , 2006, 35(3): 37-43 (in Chinese)

13 Jiao Y, Hu H-Q. Estimation of carbon emission from forest fires in Heilongjiang Province during 1980-1999. Scientia Slivae Sinicae, 2005, 14(6): 109-113(in Chinese)

106

14 Jiao Y, Hu H-Q. Carbon storage and its dynamics of forest vegetation in Heilongjiang Province. Chinese Journal of Applied Ecology, 2005, 16(12): 2248-2252 (in Chinese)

15 Hu H-Q. The assay determination of physicochemical property of main fuel types in Daxing’ an Mountain. Forest Fire Prevention, 1995(1): 27-31 (in Chinese)

16 Sinha P, Hobbs PV, Yokelson RJ, et al. Emissions of trace gases and particles from savanna fires in southern Africa. Journal of Geophysical Research, 2003, 108. - Р. 84-87.

ХАЙОХИНГАНЛИНГ ЖАЛПАҚ ЖАПЫРАҚТЫ ОРМАНДАРЫНДАҒЫ КОРЕЙ ҚАРАҒАЙЫ (PINUS KORAIENSIS) ШӨП ЖАМЫЛҒЫСЫНЫҢ ЖАНУ КЕЗІНДЕГІ

ГАЗДАРДЫ БӨЛУ СИПАТТАМАСЫ Ху Хай-гинг, Ванг Вей-ю, Сан Лонг, Лиу Фей

Мақалада Хэйлунцзян провинциясындағы Хайохинганлинг жалпақ жапырақты ормандарында өскен корей қарағайы мəліметтері келтірілген, табиғи жəне бақылау зертханасы жағдайында экспериментальді өртеу зерттеу əдісін қолданып, CO2, CO, CxHy, NO жəне SO2 бөлінген мөлшерін өлшенген жəне есептелген коэффициенттерін, 42 шөп түрін түрлі жану кезеңдерінде зерттеп, содан кейін əр түрлі шөптердің жану жағдайындағы бөліну жылдамдағын талдап, негізгі құрамы мен қорытындысы төменде келтірілген: CO2, CO, CxHy, NO жəне бөлінген SO2 шөптерде 2.9301, 0.4599, 0.0139, 0.0087, жəне 0.0227 сəйкес келген, CO2, CO, CxHy, NO жəне SO2 шөптермен тасталған санмен 1113.46, 174.73, 5.26, 3.29 жəне 8.60 мг·г-1 сəйкес келген. Нақтысы, CO2 бөліну коэффициенті, басқа төрт газдың мөлшерінен жоғары. Кластерлік талдаудың нəтижесі көрсеткендей, бір тұқымдасқа жататын шөп түрі аналогиялық сипатымен ерекшеленеді.

ХАРАКТЕРИСТИКА ГАЗОВЫДЕЛЕНИЯ ПРИ ГОРЕНИИ ТРАВЯНОГО ПОКРОВА В ШИРОКОЛИСТВЕННЫХ ЛЕСАХ КОРЕЙСКОЙ СОСНЫ (PINUS KORAIENSIS) В

XIAOXING'ANLING.

Ху Хай-гинг, Ванг Вей-ю, Сан Лонг, Лиу Фей

В статье приведены сведения о корейской сосне в широколиственных лесах Хайохинганлинг провинции Хэйлунцзян как района исследований методом изучения в природе и контролируемых лабораторных условиях экспериментальным сжиганием, измеренных и вычисленных коэффициентов выделений и выделенное количество CO2, CO, CxHy, NO и SO2 среди 42 видов трав в различных стадиях горения, затем с точки зрения скорости выделения проанализировали характеристики сжигания различных видов трав, основное содержание и результаты, как показано ниже: CO2, CO, CxHy, NO и выделений SO2 травами были 2,9301, 0,4599, 0,0139, 0,0087 и 0,0227, соответственно. CO2, CO, CxHy, NO и SO2 количество выбросов травами были 1113,46, 174,73, 5,26, 3,29 и 8,60 мг/ г-1, соответственно. Очевидно, что коэффициент выбросов CO2 и количество выбросов больше, чем у четырех других видов газов. Результаты кластерного анализа показали, что одно и то же семейство трав характеризуется аналогичными излучениями.

107

In document (NEW Jurnal №3 2012 97-2003) (бет 97-107)