• Ешқандай Нәтиже Табылған Жоқ

Methods of water quality control in terms of microbial contamination

ӘДЕБИЕТ ШОЛУ

2. Methods of water quality control in terms of microbial contamination

When our country introduced the Sanitary Rules called

"Sanitary and Epidemiological Requirements for Water Sources, Water Withdrawal Points for Household and Drinking Purposes, Household and Drinking Water Supply, Places of Cultural and Household Water Use and Safety of Water Bodies" [11] as well as "Hygienic Requirements for Surface Waters Protection" [12], a new regulatory framework has been created. It provides for the need for direct detection of viruses in drinking water, surface and waste waters. The classical and most reliable method of controlling viral water contamination is the direct isolation of viruses on cell cultures. However, it is known that many epidemiologically significant viruses (for example, hepatitis A, rotaviruses, noroviruses, etc.) are not cultivated on cells traditionally used in the practice of virus isolation or are cultivated in special cultures with great difficulty. At the same time, working with cell cultures requires special laboratory equipment, qualified personnel and significant material costs. It should also be noted that the obtained results are of a retrospective nature, which reduces both the significance of this method as a planned one in practice and water quality control in relation to viral contamination according to epidemiological indications [5].

Concerning the water quality in terms of microbial contamination, the checking necessarily includes microbiological testing. In most cases, it involves the analysis of indicator faecal microorganisms, but sometimes it may also include an assessment of the density of specific pathogens. These checking approaches involve testing water at source, water immediately after treatment, water in distribution systems, or household water reserves. The quality of drinking water is tested for microbial contamination includes Escherichia coli as an indicator of faecal contamination. Escherichia coli is strong evidence of recent contamination by faeces that must not be present in drinking water. The main requirements for indicator and sanitary-indicative microorganisms are as follows [19,41]:

1. A common source of entry into the environment with pathogenic microorganisms;

2. Equal resistance to environmental factors and disinfecting agents with pathogenic microorganisms;

3. The quantitative predominance of indicator microorganisms over pathogenic ones;

4. Indicator microorganisms must have a stable correlation with pathogenic ones in order to assume the quantitative content of the latter by the number of the former;

5. Indicator microorganisms must not multiply in the environment;

6. Simplicity and rapidity of methods for isolating indicator microorganisms;

7. Non-pathogenicity of indicator microorganisms.

However, in practice, testing for thermoduric coliform bacteria may be an acceptable alternative in plenty of cases. While Escherichia coli is a useful indicator, it has some limitations. Enteroviruses and protozoa are much more stable to disinfection, that is why the absence of Escherichia coli does not necessarily indicate release from these microorganisms. Under certain conditions, it is desirable to include bacteriophages [6,19].

As the sanitary microbiology developed, there was a constant discussion regarding various microorganisms and indicators that could be used as criteria of viral water pollution: Escherichia coli, coliphages, clostridia, viral antigens of RNA and DNA of viruses, water turbidity, etc.

Coliform bacteria and Escherichia coli cannot perform the function of indicator microorganisms in relation to viral contamination, since viruses are more resistant to the effects of chemical and physical environmental factors and disinfecting agents from water treatment than bacteria according to the data of domestic and foreign scientists [1,7-8].

The literature [2-4,9] describes outbreaks of viral hepatitis related to the use of drinking water with standard bacteriological parameters. The question of the possibility of introducing clostridia into routine sanitary and virological control as an indicator microorganism is debatable. Unlike coliform bacteria, clostridia are more resistant to various factors and water treatment agents than intestinal viruses.

In this regard, water disinfection requires significantly higher doses of chlorine, ozone and other disinfectants, which can contribute to a sharp increase in the formation of trihalomethanes, haloform compounds, free radicals, aldehydes, etc., having an adverse effect on public health and causing long-term biological effects. In addition,

Clostridia do not meet the requirements for indicator microorganisms in many other parameters.

In his works, K.K. Toguzbaeva and her colleques assume [21] that there is a trend for microbial pollution of drinking water, which directly affects public health and increases the number of acute enteric infections and viral hepatitis. Preliminary calculations based on the regression dependence revealed a direct and strong positive correlation between microbial pollution of drinking water and an increase in the number of these diseases among the studied group of people. However, in terms of microbiological indicators in the region, the percentage of non-standard water samples from centralized water supply systems decreased from 0.59% in 2009 to 0.4% in 2013, from decentralized water supply systems from 1.3% in 2009 and to 1,08% in 2013. K.K. Toguzbaeva et al. [21] came to the following conclusions:

1. The most adequate indicators of viral water pollution are coliphages and markers of DNA and RNA viruses, determined by PCR and RT-PCR, respectively;

2. Markers of DNA and RNA viruses in a water sample indicate the direct presence of viruses in water and their species, as well as their possible quantitative level, which requires epidemiological alertness.

Having studied the rural population of the Almaty region and their sanitary and hygienic living conditions [10,22], a group of researchers led by B.A. Ramazanova came to the conclusion that the analysis of the water quality of decentralized water supply sources by microbiological indicators gave grounds to state a tendency towards its improvement. During the study period in this region, 9.0% of working water pipelines did not meet sanitary and epidemiological requirements, including 52.8% due to the lack of sanitary protection zones, 28.5% due to the lack of the necessary treatment facilities and 44.3% did not have disinfection facilities. In a number of districts, the unsatisfactory condition of the existing water pipelines was simultaneously caused by several of the above reasons.

Ensuring the microbial safety of the drinking-water supply relies on the use of many barriers from the water collection to the consumer in order to prevent contamination from drinking water or reduce it to acceptable levels, not harmful to health [38-39,40,42-44]. Safety is enhanced when multiple barriers against contamination are established, including protecting water resources, selecting and implementing a range of appropriate treatment measures, and regulating distribution systems (piped or non-piped) to maintain and protect the quality of treated water. The preferred strategy is a regulatory approach that focuses on preventing or reducing the entry of pathogens into water sources, and on reducing reliance on water treatment to remove pathogens.

Thereby, outbreaks of waterborne diseases associated with microbial contamination are underinvestigated. Data on outbreaks caused by many etiological agents tend to rarely affect water supply networks, since backflow and growth events are likely not to be recognized and reported unless an entire building with a large number of people is affected.

There is a need for epidemiological studies that aim at microbial contamination of water. Surveillance systems help to track trends in causes and risk factors for waterborne diseases, but they are not very susceptible and not able to

serve as a fast warning system for water-related health problems in a particular community due to reporting delays.

Therefore, epidemiological studies of the risk of endemic diseases associated with microbial contamination of drinking-water should be carried out and developed with sufficient capacity and resources to address the shortcomings of previous studies.

Conclusion

Thus, ensuring the microbial safety of WASH requires the following: an assessment of the entire system to determine the potential harmful factors that may affect it;

determination of control measures to reduce or eliminate these harmful factors as well as operational monitoring to ensure the effective functioning of barriers from infection within the system; and developing regulatory plans to describe operations to be taken both under normal conditions and in unforeseen circumstances. These measures are three components of the WSPs. Insufficiency to ensure the microbiological safety of WASH can lead to outbreaks and fatal epidemics.

Acknowledgements

This research was funded by the Science Committee of the Ministry of Education and Science of the Republic of Kazakhstan (Grant No. AP09058465).

Contribution of the authors:

Alua O. Omarova: planned the study and wrote parts of the final paper;

Ilya A. Belyayev: performed the review and wrote the first version of the paper;

Saule B. Akhmetova: performed the review and wrote the first version of the paper;

Nurbek Zh Yerdesov: performed the review and wrote the first version of the paper;

Chingiz U. Ismailov: collected and processed the sources;

Azamat D. Kharin: collected and processed the sources.

The authors declare that there is no conflict of interest.

The authors claim a lack of funding.

This article and parts of the materials of the article were not previously published and are not under consideration in other publishers.

References:

1. Амросьева Т.В., Вотяков В.И., Дьяконова О.В., Поклонская Н.В., Богуш З.Ф., Козинец О.Н. и др.

Современные подходы к изучению и оценке вирусного загрязнения питьевых вод // Гигиена и санитария. 2002.

№ 1. С.76–79.

2. Багдасарьян Г.А., Влодавец В.В., Дмитриева Р.А., Ловцевич Е.Л. Основы санитарной вирусологии.

Москва: Медицина, 1977. 200 с.

3. Дмитриева Р.А., Доскина Т.В. Вода и кишечные вирусные инфекции // РЭТ–инфо. 2005. № 2. С. 48–52.

4. Доскина Т.В., Дмитриева Р.А. Контроль вирусного загрязнения водных объектов // РЭТ–инфо.

2005. № 3. С. 40–43.

5. Жаркинов Е.Ж., Красников В.Н., Тотанов Ж.С., Ташметов К.К., Черепанова Л.Ю. Современные проблемы гигиены села и задачи научных исследований // Медицина и экология. 2002. № 2. С.27–29.

6. Корнилова Н.М. Научное обоснование значения колифагов и их регламента для оценки качества

питьевой воды в отношении кишечных вирусов:

автореф. дис. … канд. мед.наук. Москва, 1991. 41 с.

7. Кочемасова З.Н., Ефремова С.А., Рыбакова А.М.

Санитарная микробиология и вирусология: учеб.

пособие для сан.–гигиен. фак. мед. ин–тов. Москва:

Медицина, 1987. 349 с.

8. Недачин А.Е., Доскина Т.В., Дмитриева Р.А., Лаврова Д.В. Оценка значимости колифагов как косвенных показателей вирусного загрязнения воды подземных водоисточников // Итоги и перспективы научных исследований по проблеме экологии человека и гигиены окружающей среды. 2002. №4. С. 162–168.

9. Недачин А.Е., Шипулина О.Ю., Шипулин Г.А., Чуланов В.П. Сравнительная оценка чувствительности метода полимеразной цепной реакции и иммуноферментного анализа для обнаружения вируса гепатита А в воде // Материалы конференции

«Актуальные проблемы современной вирусологии, посвященной 90–летию М.П. Чумакова». Москва, 1999, С. 64–65.

10. Нурбакыт А.Н., Абсатарова К.С., Бурибаева Ж.К., Казангапова Г.Е., Сарсенбаев Е.Ж., Давибаева Б.Р. Оценка населением санитарно–гигиенических условий в медицинских организациях г. Алматы и Алматинской области // Rusnauka. 2010. №21. URL:

http://www.rusnauka.com/28_OINXXI_2010/Medecine/7264 9.doc.htm (дата обращения: 26.06.2021).

11. Санитарные правила "Санитарно–

эпидемиологические требования к водоисточникам, местам водозабора для хозяйственно–питьевых целей, хозяйственно–питьевому водоснабжению и местам культурно–бытового водопользования и безопасности водных объектов" утвержденные Приказом Министра национальной экономики Республики Казахстан от 16

марта 2015 года № 209. URL:

https://adilet.zan.kz/rus/docs/V1500010774 (дата обращения: 24.06.2021).

12. Санитарные правила "Санитарно–

эпидемиологические требования к осуществлению производственного контроля" утвержденные Приказом Министра национальной экономики Республики Казахстан от 6 июня 2016 года № 239. URL:

https://adilet.zan.kz/rus/docs/V1600013896 (дата обращения: 24.06.2021).

13. ООН. Цели в области устойчивого развития.

Цель 6: Обеспечение наличия и рационального использования водных ресурсов и санитарии для всех.

URL: https://www.un.org/sustainabledevelopment/ru/water- and-sanitation/ (дата обращения: 25.06.2021).

14. Позин С.Г., Амвросьева Т.В., Ключенович В.И. О некоторых направлениях обеспечения безопасности воды для здоровья населения Республики Беларусь //

Военная медицина. 2016. № 1. С. 90–93.

15. Позин С.Г. О некоторых направлениях научно–

практических исследований по обеспечению микробиологической безопасности воды в хозяйственно–питьевых водопроводах Республики Беларусь // Материалы научно–практической конференции, посвящённой 80–летию санитарно–

эпидемиологической службы Республики Беларусь

«Актуальные проблемы гигиены и эпидемиологии», Минск, 17 ноября, 2006. С. 306–309.

16. Позин С.Г. Основные гигиенические аспекты обоснования микробиологической безопасности воды и алгоритма мероприятий по обеспечению её качества в хозяйственно–питьевых водопроводах: монография.

Минск: Бофф, 2006. 92 с.

17. Позин С.Г., Рызгунский В.В., Долгин А.С., Гладкий А.Г., Дроздова Е.В., Мазейко Л.Н., Пришивалко А.П., Богомья М.М., Колячко В.В. Совершенствование санитарно–гигиенического нормирования размещения источников нецентрализованного хозяйственно–

питьевого водоснабжения, заключений санэпидслужбы о качестве среды обитания, проблемы оценки содержания в воде бора и бария, измерений температуры воды из квартирных водоразборов //

Военная медицина. 2012. № 2. С. 93–97.

18. Позин С.Г., Рызгунский В.В. Итоги и задачи научно–практических исследований по обеспечению безопасности питьевой воды в Республике Беларусь //

В помощь практикующему врачу. 2013. № 2. С. 116–119.

19. Рахманин Ю.А., Недачин А.Е., Доскина Т.В., Корнилова Н.М., Дмитриева Р.А., Шарлот Ю.М.

Индикаторная значимость колифагов в отношении загрязнения питьевой воды кишечными вирусами //

Гигиена и санитария. 1990. № 6. С. 84–88.

20. Сбойчаков В.Б. Микробиология, основы эпидемиологии и методы микробиологических исследований: учебник для медицинских учебных заведений 3–е изд., испр. и доп. Санкт–Петербург: Изд–

во СпецЛит, 2017. 712 с.

21. Тогузбаева К.К., Джанбатырова А.Е., Сейдуанова Л.Б., Ниязбекова Л.С., Калдыбай А.У., Жунистаев Д.Д., Мейирман А.С., Толеу Е.Т.

Гигиеническая оценка качества сельского водоснабжения по результатам лабораторных данных Енбекшиказахского района // Вестник КазНМУ. 2015. № 2. С.634–637.

22. Тогузбаева К.К., Мырзахметова Ш.К., Ниязбекова Л.С., Оракбай Л.Ж., Жунистаев Д.Д., Сейдуанова Л.Б., Сайлыбекова А.К., Смагулов А.Б., Суменова К.А., Сабирова Г.Р. Гигиеническая оценка влияния качества хозяйственно–питьевого водоснабжения на здоровье сельского населения Алматинской области // Вестник Каз НМУ. 2014. № 3. С.33–38.

23. Badhai J., Ghosh T.S., Das S.K. Taxonomic and functional characteristics of microbial communities and their correlation with physicochemical properties of four geothermal springs in Odisha, India // Front. Microbiol.

2015. N 6. P. 1–15.

https://doi.org/10.3389/fmicb.2015.01166

24. De Boeck H., Lunguya O, Muyembe J.J., Glupczynski Y., Jacobs J. Presence of extended–spectrum beta–lactamase–producing Enterobacteriaceae in waste waters, Kinshasa, the Democratic Republic of the Congo //

Eur J Clin Microbiol Infect Dis. 2012 N 31. P. 3085–3088.

https://doi.org/10.1007/s10096–012–1669–8

25. Ding Z., Zhai Y., Wu C., Wu H, Lu Q., Lin J., He F.

Infectious diarrheal disease caused by contaminated well water in Chinese schools: A systematic review and meta–

analysis // J Epidemiol. 2017. N 27. P. 274–281.

https://doi.org/10.1016/j.je.2016.07.006

26. Divyashree M., Mani M. K., Shama Prakash K., Vijaya Kumar D., Veena Shetty A., Shetty A.K.,

Karunasagar I. Hospital wastewater treatment reduces NDM–positive bacteria being discharged into water bodies // Water Environ Res. 2020. N 92. P. 562–568.

https://doi.org/10.1002/wer.1248

27. Douterelo I., Husband S., Boxall J.B. The bacterial composition of biomass recovered by flushing an operational drinking water distribution system // Water Res.

2014. N 54. P. 100–114.

https://doi.org/10.1016/j.watres.2014.01.049

28. Gomez–Alvarez V., Schrantz K.A., Pressman J.G., Wahman D.G. Biofilm community dynamics in bench–scale annular reactors simulating arrestment of chloraminated drinking water nitrification // Environ. Sci. Technol. 2014. N.

48. P. 5448–5457. https://doi.org/10.1021/es5005208 29. Gomez–Alvarez V., Revetta R.P., Santo Domingo J.W. Metagenomic analysis of drinking water receiving different disinfection treatments // Appl. Environ. Microbiol.

2012. N 78. P. 6095–6102.

https://doi.org/10.1128/AEM.01018–12

30. Haberecht H.B., Nealon N.J., Gilliland J.R., Holder A.V., Runyan C., Oppel R.C., Ibrahim H.M., Mueller L., Schrupp F., Vilchez S., Antony L., Scaria J., Ryan E.P.

Antimicrobial–Resistant Escherichia coli from Environmental Waters in Northern Colorado // J Environ Public Health. 2019. N 18. P. 1–13.

https://doi.org/10.1155/2019/3862949

31. Hendriksen R.S., Munk P., Njage P.M.K., van Bunnik B., McNally L., Lukjancenko O., Röder T., Nieuwenhuijse D., Karlsmose Pedersen S., Kjeldgaard J.

S., Kaas R.S., Clausen P.T.L.C., Vogt J.K., Leekitcharoenphon P., van de Schans M.G.M., Zuidema T., de Roda Husman A.M., Rasmussen S., Petersen B., Aarestrup F.M. Global monitoring of antimicrobial resistance based on metagenomics analyses of urban sewage //

Nature Communications. 2019. N 1124. P. 1–12.

https://doi.org/10.1038/s41467–019–08853–3

32. Honda R., Tachi C., Yasuda K., Hirata T., Noguchi M., Hara–Yamamura H., Yamamoto–Ikemoto R., Watanabe T. Estimated discharge of antibiotic–resistant bacteria from combined sewer overflows of urban sewage system // NPJ Clean Water. 2020. N 3. P. 1–7.

https://doi.org/10.1038/s41545–020–0059–5

33. Hwang C., Ling F., Andersen G. L., LeChevallier M.

W., Liu W. Microbial community dynamics of an urban drinking water distribution system subjected to phases of chloramination and chlorination treatments // Appl. Environ.

Microbiol. 2012. N 78. P. 7856–7865.

https://doi.org/10.1128/AEM.01892–12

34. Khan A.U., Maryam L., Zarrilli R. Structure, Genetics and Worldwide Spread of New Delhi Metallo–β–

lactamase (NDM): a threat to public health // BMC Microbiol. 2017. N 27. P. 1–12.

https://doi.org/10.1186/s12866–017–1012–8

35. McArdell C. S., Molnar E., Suter M. J., Giger W.

Occurrence and fate of macrolide antibiotics in wastewater treatment plants and in the Glatt Valley watershed, Switzerland // Environ Sci Technol. 2003.N 37. P. 5479–86.

https://doi.org/10.1021/es034368i

36. Nescerecka A., Rubulis J., Vital A., Juhna T., Hammes F. Biological instability in a chlorinated drinking water distribution system // PLoS One. 2014. N 9. P. 1–11.

https://doi.org/10.1371/journal.pone.0096354

37. Niquette P., Servais P., Savoir R. Impacts of pipe materials on densities of fixed bacterial biomass in a drinking water distribution system // Water Res. 2000. N 34.

P. 1952–1956. https://doi.org/10.1016/S0043–

1354(99)00307–3

38. Omarova A. Morbidity of Rural Population Associated with the Quality of Drinking Water Supply //

Медицина. 2019. № 4. С. 8–13.

39. Omarova A., Kalishev M. The Status of Household and Drinking Water Supply of the Rural Population of Karaganda Region // Астана медициналық журналы.

2017. №4. С. 123–128.

40. Omarova A., Tussupova K., Berndtsson R., Kalishev M. Medical and Social Significance of Water Supply, Sanitation and Hygiene in Human Activity //

Вестник КазНМУ. 2017. № 3. С. 193–197.

41. Omarova A., Tussupova K., Berndtsson R., Kalishev M. Burden of Water–Related Diseases in Developing Countries. Literature Review // Наука и Здравоохранение. 2017. № 3. С. 95–109.

42. Omarova A., Tussupova K., Berndtsson R., Kalishev M., Sharapatova K. Protozoan Parasites in Drinking Water: A System Approach for Improved Water, Sanitation and Hygiene in Developing Countries //

International Journal of Environmental Research and Public

Health. 2018. N 15. P. 1–18.

https://doi.org/10.3390/ijerph15030495

43. Omarova A., Tussupova K., Hjorth P., Kalishev M., Dosmagambetova R. Water Supply Challenges in Rural Areas: A Case Study from Central Kazakhstan //

International Journal of Environmental Research and Public

Health. 2019. N 16. P. 1–14.

https://doi.org/10.3390/ijerph16050688

44. Omarova A., Tussupova K. The future of piped water in villages in low– and middle–income countries //

European Journal of Public Health. 2018. N 2. P. 336–337.

https://doi.org/10.1093/eurpub/cky214.081

45. Paduano S., Marchesi I, Casali M.E, et al.

Characterisation of Microbial Community Associated with Different Disinfection Treatments in Hospital Hot Water Network // Int J Environ Res Public Health. 2020. N 17. P.

1–17. https://doi.org/10.3390/ijerph17062158

46. Paduano S., Valeriani F., Romano–Spica V., Bargellini A., Borella P., Marchesi I. Microbial biodiversity of thermal water and mud in an Italian spa by metagenomics:

A pilot study. // Water Sci. Technol. Water Supply. 2018. N 18. P. 1456–1465. https://doi.org/10.2166/ws.2017.209

47. Pinto A. J., Xi C., Raskin L. Bacterial community structure in the drinking water microbiome is governed by filtration processes Environ // Sci. Technol. 2012. N 46. P.

8851–8859. https://doi.org/10.1021/es302042t

48. Proctor C., Hammes F. Drinking water microbiology – from measurement to management // Curr. Opin.

Microbiol. 2015. N 33. P. 87–95.

https://doi.org/10.1016/j.copbio.2014.12.014

49. Rathinasabapathi P., Hiremath D. S., Arunraj R., Parani M. Molecular Detection of New Delhi Metallo–Beta–

Lactamase–1 (NDM–1) Positive Bacteria from Environmental and Drinking Water Samples by Loop Mediated Isothermal Amplification of bla NDM–1 // Indian J Microbiol. 2015. N 55. P. 400–405.

https://doi.org/10.1007/s12088–015–0540–x

50. Runcharoen C., Raven K. E., Reuter S., Kallonen T., Paksanont S., Thammachote J., Anun S., Blane B., Parkhill J., Peacock S.J., Chantratita N. Whole genome sequencing of ESBL–producing Escherichia coli isolated from patients, farm waste and canals in Thailand // Genome Med. 2017. N 9. P. 1–11. https://doi.org/10.1186/s13073–

017–0471–8

51. Sano D., Louise Wester A., Schmitt H., Amarasiri M., Kirby A., Medlicott K, Roda Husman A.M. Updated research agenda for water, sanitation and antimicrobial resistance // J Water Health. 2020. N 18. P. 858–866.

https://doi.org/10.2166/wh.2020.033

52. Yong D., Toleman M.A., Giske C. G., Cho H.S., Sundman K., Lee K., Walsh T.R. Characterization of a new metallo–beta–lactamase gene, bla (NDM–1), and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India // Antimicrob Agents Chemother. 2009. N 53. P.

5046–5054. https://doi.org/10.1128/AAC.00774–09 53. Zagui G.S., de Andrade L.N., Moreira N. C., Silva T.V., Machado G.P., da Costa Darini A.L., Segura–Muñoz S.I. Gram–negative bacteria carrying β–lactamase encoding genes in hospital and urban wastewater in Brazil // Environ Monit Assess. 2020. N 192. P. 1–10.

https://doi.org/10.1007/s10661–020–08319–w References:

1. Amros'eva T.V., Votyakov V.I., D'yakonova O.V., Poklonskaya N.V., Bogush Z.F., Kozinec O.N. i dr. [and others] Sovremennye podhody k izucheniyu i otsenke virusnogo zagryazneniya pit'evykh vod [Modern approaches to the study and assessment of viral contamination of drinking water]. Gigiena i sanitariya [Hygiene and sanitation]. 2002, 1, pp. 76–79. [in Russian]

2. Bagdasar'yan G.A., Vlodavec V.V., Dmitrieva R.A., Lovcevich E.L. Osnovy sanitarnoi virusologii [Fundamentals of sanitary virology]. Moscow, Meditsina [Medicine], 1977, 200 p. [in Russian]

3. Dmitrieva R.A., Doskina T.V. Voda i kishechnye virusnye infektsii [Water and intestinal viral infections].

RET–info. 2005, 2, pp. 48–52. [in Russian]

4. Doskina T.V., Dmitrieva R. A. Kontrol' virusnogo zagryazneniya vodnykh ob"ektov [Control of viral contamination of water bodies]. RET–info. 2005, pp. 40–43.

[in Russian]

5. Zharkinov E.Zh., Krasnikov V.N., Totanov Zh.S., Tashmetov K.K., Cherepanova L.Yu. Sovremennye problemy gigieny sela i zadachi nauchnyh issledovanij [Modern problems of rural hygiene and the tasks of scientific research]. Meditsina i ekologiya [Medicine and ecology]. 2002, 2, pp. 27–29. [in Russian]

6. Kornilova N.M. Nauchnoe obosnovanie znacheniya kolifagov i ih reglamenta dlya otsenki kachestva pit'evoi vody v otnoshenii kishechnykh virusov: avtoref. dis. … kand. med.nauk [Scientific substantiation of the importance of coliphages and their regulations for assessing the quality of drinking water in relation to intestinal viruses: abstract of the dissertation of the Candidate of Medical Sciences].

Moscow, 1991, 41 p. [in Russian]

7. Kochemasova Z.N., Efremova S.A., Rybakova A.M.

Sanitarnaya mikrobiologiya i virusologiya: ucheb. posobie dlya san.–gigien. fak. med. in–tov [Sanitary microbiology

and virology: a textbook for sanitary and hygienic faculties of medical institutes]. Moscow, Meditsina [Medicine], 1987, 349 p. [in Russian]

8. Nedachin A.E., Doskina T.V., Dmitrieva R.A., Lavrova D.V. Otsenka znachimosti kolifagov kak kosvennykh pokazatelei virusnogo zagryazneniya vody podzemnykh vodoistochnikov [Assessment of the significance of coliphages as indirect indicators of viral contamination of water from underground water sources].

Itogi i perspektivy nauchnyh issledovanij po probleme ekologii cheloveka i gigieny okruzhayushchej sredy [Results and prospects of scientific research on the problem of human ecology and environmental hygiene]. 2002, 4, pp.

162–168. [in Russian]

9. Nedachin A.E., Shipulina O.Yu., Shipulin G.A., Chulanov V.P. Sravnitel'naya otsenka chuvstvitel'nosti metoda polimeraznoi tsepnoi reaktsii i immunofermentnogo analiza dlya obnaruzheniya virusa gepatita A v vode [Comparative evaluation of the sensitivity of the polymerase chain reaction method and enzyme immunoassay for detecting hepatitis A virus in water]. Materialy konferentsii

“Aktual'nye problemy sovremennoj virusologii, posvyashchennoj 90–letiyu M.P. Chumakova” [Materials of the conference “Actual problems of modern virology dedicated to the 90th anniversary of M.P. Chumakov”].

Moscow, 1999, pp. 64–65. [in Russian]

10. Nurbakyt A.N., Absatarova K.S., Buribaeva Zh.K., Kazangapova G.E., Sarsenbaev E.Zh., Davibaeva B.R.

Otsenka naseleniem sanitarno–gigienicheskikh uslovii v medicinskikh organizatsiyakh g. Almaty i Almatinskoi oblasti [Assessment by the population of sanitary and hygienic conditions in medical organizations of Almaty and Almaty region]. Rusnauka. 2010, 21. Available at:

http://www.rusnauka.com/28_OINXXI_2010/Medecine/7264 9.doc.htm (accessed 26.06.2021). [in Russian]

11. Sanitarnye pravila “Sanitarno–epidemiologicheskie trebovaniya k vodoistochnikam, mestam vodozabora dlya hozyaistvenno–pit'evykh tselei, khozyaistvenno–pit'evomu vodosnabzheniyu i mestam kul'turno–bytovogo vodopol'zovaniya i bezopasnosti vodnykh ob"ektov”

utverzhdennyi Prikazom Ministra natsional'noi ekonomiki Respubliki Kazahstan ot 16 marta 2015 goda No. 209 [Sanitary rules “Sanitary and epidemiological requirements for water sources, places of water intake for economic and drinking purposes, economic and drinking water supply and places of cultural and domestic water use and safety of water bodies” approved by Order of the Minister of National Economy of the Republic of Kazakhstan No. 209 dated

March 16, 2015]. Available at:

https://adilet.zan.kz/rus/docs/V1500010774 (accessed 24.06.2021). [in Russian]

12. Sanitarnye pravila “Sanitarno–epidemiologicheskie trebovaniya k osushchestvleniyu proizvodstvennogo kontrolya” utverzhdennye Prikazom Ministra natcional'noi ekonomiki Respubliki Kazahstan ot 6 iyunya 2016 goda No.

239 [Sanitary rules “Sanitary and epidemiological requirements for the implementation of production control”

approved by Order No. 239 of the Minister of National Economy of the Republic of Kazakhstan dated June 6,

2016]. Available at:

https://adilet.zan.kz/rus/docs/V1600013896 (accessed 24.06.2021). [in Russian]

13. OON. Celi v oblasti ustoichivogo razvitiya. Cel' 6:

Obespechenie nalichiya i ratsional'nogo ispol'zovaniya vodnykh resursov i sanitarii dlya vsekh [UN. Sustainable Development Goals. Goal 6: Ensure the availability and rational use of water resources and sanitation for all].

Available at:

https://www.un.org/sustainabledevelopment/ru/water-and- sanitation/ (accessed 25.06.2021). [in Russian]

14. Pozin S.G., Amvros'eva T.V., Klyuchenovich V.I.

O nekotorykh napravleniyah obespecheniya bezopasnosti vody dlya zdorov'ya naseleniya Respubliki Belarus' [About some directions of ensuring water safety for the health of the population of the Republic of Belarus]. Voennaya meditsina [Military medicine]. 2016, 1, pp. 90–93. [in Russian]

15. Pozin S.G. O nekotorykh napravleniyakh nauchno–prakticheskikh issledovanii po obespecheniyu mikrobiologicheskoi bezopasnosti vody v hozyaistvenno–

pit'evykh vodoprovodakh Respubliki Belarus' [About some directions of scientific and practical research on ensuring the microbiological safety of water in drinking water supply systems of the Republic of Belarus]. Materialy nauchno–

prakticheskoi konferentsii, posvyashchyonnoi 80–letiyu sanitarno–epidemiologicheskoi sluzhby Respubliki Belarus'

“Aktual'nye problemy gigieny i epidemiologii” [Materials of the scientific and practical conference dedicated to the 80th anniversary of the sanitary and epidemiological service of the Republic of Belarus “Actual problems of hygiene and epidemiology”], Minsk, November 17, 2006, pp. 306–309.

[in Russian]

16. Pozin S.G. Osnovnye gigienicheskie aspekty obosnovaniya mikrobiologicheskoi bezopasnosti vody i algoritma meropriyatii po obespecheniyu eyo kachestva v khozyajstvenno–pit'evykh vodoprovodakh: monografiya [The main hygienic aspects of the substantiation of the microbiological safety of water and the algorithm of measures to ensure its quality in household and drinking water pipes: monograph]. Minsk, Boff, 2006, 92 p. [in Russian]

17. Pozin S.G., Ryzgunskij V.V., Dolgin A.S., Gladkij A.G., Drozdova E.V., Mazejko L.N., Prishivalko A.P., Bogom'ya M.M., Kolyachko V.V. Sovershenstvovanie sanitarno–gigienicheskogo normirovaniya razmeshcheniya istochnikov netsentralizovannogo hozyajstvenno–pit'evogo vodosnabzheniya, zaklyuchenii sanepidsluzhby o kachestve sredy obitaniya, problemy otsenki soderzhaniya v vode bora i bariya, izmerenii temperatury vody iz kvartirnykh vodorazborov [Improvement of sanitary and hygienic rationing of the placement of sources of non-centralized household and drinking water supply, conclusions of the sanitary and epidemiological service on the quality of the habitat, problems of assessing the content of boron and barium in water, measurements of water temperature from apartment water samples]. Voennaya meditsina [Military medicine]. 2012, 2, pp. 93–97. [in Russian]

18. Pozin S.G., Ryzgunskij V.V. Itogi i zadachi nauchno–prakticheskikh issledovanii po obespecheniyu bezopasnosti pit'evoi vody v Respublike Belarus' [Results and tasks of scientific and practical research on ensuring the safety of drinking water in the Republic of Belarus]. V pomoshch' praktikuyushchemu vrachu [To help a practicing doctor]. 2013, 2, pp. 116–119. [in Russian]

Outline

СӘЙКЕС КЕЛЕТІН ҚҰЖАТТАР