ИЗВЕСТИЯ
НАЦИОНАЛЬНОЙ АКАДЕМИИ НАУК РЕСПУБЛИКИ
КАЗАХСТАН Satbayev University
N E W S
OF THE ACADEMY OF SCIENCES OF THE REPUBLIC OF KAZAKHSTAN Satbayev University ҚАЗАҚСТАН РЕСПУБЛИКАСЫ
ҰЛТТЫҚ ҒЫЛЫМ АКАДЕМИЯСЫ Satbayev University
Х А Б А Р Л А Р Ы
SERIES
OF GEOLOGY AND TECHNICAL SCIENCES
3 (453)
MAY – JUNE 2022
THE JOURNAL WAS FOUNDED IN 1940 PUBLISHED 6 TIMES A YEAR
ALMATY, NAS RK
Index, a new edition of Web of Science. Content in this index is under consideration by Clarivate Analytics to be accepted in the Science Citation Index Expanded, the Social Sciences Citation Index, and the Arts & Humanities Citation Index. The quality and depth of content Web of Science offers to researchers, authors, publishers, and institutions sets it apart from other research databases. The inclusion of News of NAS RK. Series of geology and technical sciences in the Emerging Sources Citation Index demonstrates our dedication to providing the most relevant and influential content of geology and engineering sciences to our community.
Қазақстан Республикасы Ұлттық ғылым академиясы «ҚР ҰҒА Хабарлары. Геология және техникалық ғылымдар сериясы» ғылыми журналының Web of Science-тің жаңаланған нұсқасы Emerging Sources Citation Index-те индекстелуге қабылданғанын хабарлайды. Бұл индекстелу барысында Clarivate Analytics компаниясы журналды одан әрі the Science Citation Index Expanded, the Social Sciences Citation Index және the Arts & Humanities Citation Index-ке қабылдау мәселесін қарастыруда. Webof Science зерттеушілер, авторлар, баспашылар мен мекемелерге контент тереңдігі мен сапасын ұсынады. ҚР ҰҒА Хабарлары. Геология және техникалық ғылымдар сериясы Emerging Sources Citation Index-ке енуі біздің қоғамдастық үшін ең өзекті және беделді геология және техникалық ғылымдар бойынша контентке адалдығымызды білдіреді.
НАН РК сообщает, что научный журнал «Известия НАН РК. Серия геологии и технических наук» был принят для индексирования в Emerging Sources Citation Index, обновленной версии Web of Science. Содержание в этом индексировании находится в стадии рассмотрения компанией Clarivate Analytics для дальнейшего принятия журнала в the Science Citation Index Expanded, the Social Sciences Citation Index и the Arts & Humanities Citation Index. Web of Science предлагает качество и глубину контента для исследователей, авторов, издателей и учреждений. Включение Известия НАН РК. Серия геологии и технических наук в Emerging Sources Citation Index демонстрирует нашу приверженность к наиболее актуальному и влиятельному контенту по геологии и техническим наукам для нашего сообщества.
«ҚР ҰҒА Хабарлары. Геология және техникалық ғылымдар сериясы».
ISSN 2518-170X (Online), ISSN 2224-5278 (Print)
Меншіктеуші: «Қазақстан Республикасының Ұлттық ғылым академиясы» РҚБ (Алматы қ.).
Қазақстан Республикасының Ақпарат және қоғамдық даму министрлiгiнің Ақпарат комитетінде 29.07.2020 ж. берілген № KZ39VPY00025420 мерзімдік басылым тіркеуіне қойылу туралы куәлік.
Тақырыптық бағыты: геология, мұнай және газды өңдеудің химиялық технологиялары, мұнай химиясы, металдарды алу және олардың қосындыларының технологиясы.
Мерзімділігі: жылына 6 рет.
Тиражы: 300 дана.
Редакцияның мекен-жайы: 050010, Алматы қ., Шевченко көш., 28, 219 бөл., тел.: 272-13-19 http://www.geolog-technical.kz/index.php/en/
© Қазақстан Республикасының Ұлттық ғылым академиясы, 2022 Типографияның мекен-жайы: «Аруна» ЖК, Алматы қ., Мұратбаев көш., 75.
Бас редактор
ЖҰРЫНОВ Мұрат Жұрынұлы, химия ғылымдарының докторы, профессор, ҚР ҰҒА академигі, Қазақстан Республикасы Ұлттық Ғылым академиясының президенті, АҚ «Д.В.
Сокольский атындағы отын, катализ және электрохимия институтының» бас директоры (Алматы, Қазақстан) H = 4
Ғылыми хатшы
АБСАДЫКОВ Бахыт Нарикбайұлы, техника ғылымдарының докторы, профессор, ҚР ҰҒА жауапты хатшысы, А.Б. Бектұров атындағы химия ғылымдары институты (Алматы, Қазақстан) H = 5
Р е д а к ц и я л ы қ а л қ а:
ӘБСАМЕТОВ Мәліс Құдысұлы (бас редактордың орынбасары), геология-минералогия ғылымдарының докторы, профессор, ҚР ҰҒА академигі, «У.М. Ахмедсафина атындағы гидрогеология және геоэкология институтының» директоры (Алматы, Қазақстан) H = 2
ЖОЛТАЕВ Герой Жолтайұлы (бас редактордың орынбасары), геология-минералогия ғылымдарының докторы, профессор, Қ.И. Сатпаев тындағы геология ғылымдары институтының директоры (Алматы, Қазақстан) Н=2
СНОУ Дэниел, Рһ.D, қауымдастырылған профессор, Небраска университетінің Су ғылымдары зертханасының директоры (Небраска штаты, АҚШ) H = 32
ЗЕЛЬТМАН Реймар, Рһ.D, табиғи тарих мұражайының Жер туралы ғылымдар бөлімінде петрология және пайдалы қазбалар кен орындары саласындағы зерттеулердің жетекшісі (Лондон, Англия) H = 37
ПАНФИЛОВ Михаил Борисович, техника ғылымдарының докторы, Нанси университетінің профессоры (Нанси, Франция) Н=15
ШЕН Пин, Рһ.D, Қытай геологиялық қоғамының тау геологиясы комитеті директорының орын- басары, Американдық экономикалық геологтар қауымдастығының мүшесі (Пекин, Қытай) H = 25 ФИШЕР Аксель, Ph.D, Дрезден техникалық университетінің қауымдастырылған профессоры (Дрезден, Берлин) Н = 6
КОНТОРОВИЧ Алексей Эмильевич, геология-минералогия ғылымдарының докторы, профессор, РҒА академигі, А.А. Трофимука атындағы мұнай-газ геологиясы және геофизика институты (Новосибирск, Ресей) H = 19
АГАБЕКОВ Владимир Енокович, химия ғылымдарының докторы, Беларусь ҰҒА академигі, Жаңа материалдар химиясы институтының құрметті директоры (Минск, Беларусь) H = 13
КАТАЛИН Стефан, Рһ.D, Дрезден техникалық университетінің қауымдастырылған профессоры (Дрезден, Берлин) H = 20
СЕЙТМҰРАТОВА Элеонора Юсуповна, геология-минералогия ғылымдарының докторы, профессор, ҚР ҰҒА корреспондент-мүшесі, Қ.И. Сатпаев атындағы Геология ғылымдары институты зертханасының меңгерушісі (Алматы, Қазақстан) Н=11
САҒЫНТАЕВ Жанай, Ph.D, қауымдастырылған профессор, Назарбаев университеті (Нұр- Сұлтан, Қазақстан) H = 11
ФРАТТИНИ Паоло, Рһ.D, Бикокк Милан университеті қауымдастырылған профессоры (Милан, Италия) H = 28
«Известия НАН РК. Серия геологии и технических наук».
ISSN 2518-170X (Online), ISSN 2224-5278 (Print)
Собственник: Республиканское общественное объединение «Национальная академия наук Республики Казахстан» (г. Алматы).
Свидетельство о постановке на учет периодического печатного издания в Комитете информации Министерства информации и общественного развития Республики Казахстан № KZ39VPY00025420, выданное 29.07.2020 г.
Тематическая направленность: геология, химические технологии переработки нефти и газа, нефтехимия, технологии извлечения металлов и их соеденений.
Периодичность: 6 раз в год.
Тираж: 300 экземпляров.
Адрес редакции: 050010, г. Алматы, ул. Шевченко, 28, оф. 219, тел.: 272-13-19 http://www.geolog-technical.kz/index.php/en/
© Национальная академия наук Республики Казахстан, 2022 Адрес типографии: ИП «Аруна», г. Алматы, ул. Муратбаева, 75.
Главный редактор
ЖУРИНОВ Мурат Журинович, доктор химических наук, профессор, академик НАН РК, президент Национальной академии наук Республики Казахстан, генеральный директор АО
«Институт топлива, катализа и электрохимии им. Д.В. Сокольского» (Алматы, Казахстан) H = 4 Ученный секретарь
АБСАДЫКОВ Бахыт Нарикбаевич, доктор технических наук, профессор, ответственный секретарь НАН РК, Институт химических наук им. А.Б. Бектурова (Алматы, Казахстан) H = 5
Р е д а к ц и о н н а я к о л л е г и я:
АБСАМЕТОВ Малис Кудысович, (заместитель главного редактора), доктор геологомине ра ло- гических наук, профессор, академик НАН РК, директор Института гидрогеологии и геоэкологии им.
У.М. Ахмедсафина (Алматы, Казахстан) H = 2
ЖОЛТАЕВ Герой Жолтаевич, (заместитель главного редактора), доктор геологоминерало- ги ческих наук, профессор, директор Института геологических наук им. К.И. Сатпаева (Алматы, Казахстан) Н=2
СНОУ Дэниел, Ph.D, ассоциированный профессор, директор Лаборатории водных наук универ- ситета Небраски (штат Небраска, США) H = 32
ЗЕЛЬТМАН Реймар, Ph.D, руководитель исследований в области петрологии и месторождений полезных ископаемых в Отделе наук о Земле Музея естественной истории (Лондон, Англия) H = 37
ПАНФИЛОВ Михаил Борисович, доктор технических наук, профессор Университета Нанси (Нанси, Франция) Н=15
ШЕН Пин, Ph.D, заместитель директора Комитета по горной геологии Китайского геологического общества, член Американской ассоциации экономических геологов (Пекин, Китай) H = 25
ФИШЕР Аксель, ассоциированный профессор, Ph.D, технический университет Дрезден (Дрезден, Берлин) H = 6
КОНТОРОВИЧ Алексей Эмильевич, доктор геолого-минералогических наук, профессор, академик РАН, Институт нефтегазовой геологии и геофизики им. А.А. Трофимука СО РАН (Новосибирск, Россия) H = 19
АГАБЕКОВ Владимир Енокович, доктор химических наук, академик НАН Беларуси, почетный директор Института химии новых материалов (Минск, Беларусь) H = 13
КАТАЛИН Стефан, Ph.D, ассоциированный профессор, Технический университет (Дрезден, Берлин) H = 20
СЕЙТМУРАТОВА Элеонора Юсуповна, доктор геолого-минералогических наук, профессор, член-корреспондент НАН РК, заведующая лаборатории Института геологических наук им. К.И.
Сатпаева (Алматы, Казахстан) Н=11
САГИНТАЕВ Жанай, Ph.D, ассоциированный профессор, Назарбаев университет (Нурсултан, Казахстан) H = 11
ФРАТТИНИ Паоло, Ph.D, ассоциированный профессор, Миланский университет Бикокк (Милан, Италия) H = 28
News of the National Academy of Sciences of the Republic of Kazakhstan. Series of geology and technology sciences.
ISSN 2518-170X (Online), ISSN 2224-5278 (Print)
Owner: RPA «National Academy of Sciences of the Republic of Kazakhstan» (Almaty).
The certificate of registration of a periodical printed publication in the Committee of information of the Ministry of Information and Social Development of the Republic of Kazakhstan No. KZ39VPY00025420, issued 29.07.2020.
Thematic scope: geology, chemical technologies for oil and gas processing, petrochemistry, technologies for extracting metals and their connections.
Periodicity: 6 times a year.
Circulation: 300 copies.
Editorial address: 28, Shevchenko str., of. 219, Almaty, 050010, tel. 272-13-19 http://www.geolog-technical.kz/index.php/en/
© National Academy of Sciences of the Republic of Kazakhstan, 2022 Address of printing house: ST «Aruna», 75, Muratbayev str, Almaty.
Editorial chief
ZHURINOV Murat Zhurinovich, doctor of chemistry, professor, academician of NAS RK, president of the National Academy of Sciences of the Republic of Kazakhstan, general director of JSC “Institute of fuel, catalysis and electrochemistry named after D.V. Sokolsky» (Almaty, Kazakhstan) H = 4
Scientific secretary
ABSADYKOV Bakhyt Narikbaevich, doctor of technical sciences, professor, executive secretary of NAS RK, Bekturov Institute of chemical sciences (Almaty, Kazakhstan) H = 5
E d i t o r i a l b o a r d:
ABSAMETOV Malis Kudysovich, (deputy editor-in-chief), doctor of geological and mineralogical sciences, professor, academician of NAS RK, director of the Akhmedsafin Institute of hydrogeology and hydrophysics (Almaty, Kazakhstan) H=2
ZHOLTAEV Geroy Zholtaevich, (deputy editor-in-chief), doctor of geological and mineralogical sciences, professor, director of the institute of geological sciences named after K.I. Satpayev (Almaty, Kazakhstan) Н=2
SNOW Daniel, Ph.D, associate professor, director of the labotatory of water sciences, Nebraska University (Nebraska, USA) H = 32
ZELTMAN Reymar, Ph.D, head of research department in petrology and mineral deposits in the Earth sciences section of the museum of natural history (London, England) H = 37
PANFILOV Mikhail Borisovich, doctor of technical sciences, professor at the Nancy University (Nancy, France) Н=15
SHEN Ping, Ph.D, deputy director of the Committee for Mining geology of the China geological Society, Fellow of the American association of economic geologists (Beijing, China) H = 25
FISCHER Axel, Ph.D, associate professor, Dresden University of technology (Dresden, Germany) H = 6 KONTOROVICH Aleksey Emilievich, doctor of geological and mineralogical sciences, professor, academician of RAS, Trofimuk Institute of petroleum geology and geophysics SB RAS (Novosibirsk, Russia) H = 19
AGABEKOV Vladimir Enokovich, doctor of chemistry, academician of NAS of Belarus, honorary director of the Institute of chemistry of new materials (Minsk, Belarus) H = 13
KATALIN Stephan, Ph.D, associate professor, Technical university (Dresden, Berlin) H = 20 SEITMURATOVA Eleonora Yusupovna, doctor of geological and mineralogical sciences, professor, corresponding member of NAS RK, head of the laboratory of the Institute of geological sciences named after K.I. Satpayev (Almaty, Kazakhstan) Н=11
SAGINTAYEV Zhanay, Ph.D, associate professor, Nazarbayev University (Nursultan, Kazakhstan) H = 11
FRATTINI Paolo, Ph.D, associate professor, university of Milano-Bicocca (Milan, Italy) H = 28
NEWS of the National Academy of Sciences of the Republic of Kazakhstan SERIES OF GEOLOGY AND TECHNICAL SCIENCES
ISSN 2224-5278
Volume 3, Number 453 (2022), 32-51 https://doi.org/10.32014/2022.2518-170X.178
E.B. Abikak*, B.K. Kenzhaliev
Satbayev University, Institute of Metallurgy and Ore Benefication JSC, Almaty, Kazakhstan.
E-mail: [email protected]
DEVELOPMENT OF AN INTEGRATED TECHNOLOGY INTENDED TO PROCESS PYRITE SLAG USING
CHEMICAL PRE-ACTIVATION
Abstract. The existing methods intended to process pyrite slag require improvement. The novelty of the technology used in this work is the preliminary chemical pyrite slag activation in a sodium bicarbonate solution. It was found that changes of phase composition occur as a result of pyrite slag activation:
disappeared phases of trinatrium phosphate of zinc oxide hydrate and dolomite;
the amount of sodium thiophosphate; the amount of albite and of natrozharosite phase decreased; the phase of magnesium, calcium silicate and sodium thiophosphate appeared. After activation, the content of the iron-containing phases also increases. Changes of phase composition of pyrite slag are connected with interaction reactions of sodium hydrocarbonate with trisodium phosphate zinc oxide hydrate, natrozharosite and with dolomite with formation of sodium thiophosphate, calcium silicate and magnesium aluminosilicate. At leaching of pyrite cinders after preliminary activation in 15% Н2SO4 solution extraction in solution, wt. % was obtained: CuO 76.8; ZnO 75.9 and Fe2O3 26.0. Without chemical activation the degree of extraction of non-ferrous metals in sulphuric acid solution is lower by 15 – 20%. As a result of the stage neutralization of the leaching solution of pyrite slag at pH 9.7 the neutralization precipitate - concentrate of non-ferrous metals, wt. % was obtained: CuO 6.4; ZnO 12.55.
Concentrate yield was 1.5% of the initial mass of pyrite slag. Smelting of leaching cakes of pyrite slag produced crude iron with chemical composition, wt
%: 91.13 Fe; 3.99 Si; i/r P; 2.57 C; 0.81 Mn; 0.025 S.
Key words: pyrite slag, chemical activation, phase composition, non-ferrous metals, leaching, concentrate, blooming cast iron.
Е.Б. Абиқақ*, Б.К. Кенжалиев
Satbayev University, «Металлургия және кен байыту институты» АҚ, Алматы, Қазақстан.
E-mail: [email protected]
АЛДЫН АЛА ХИМИЯЛЫҚ БЕЛСЕНДІРУ МЕН ПИРИТТІ КҮЙІКТЕРДІ ӨҢДЕУДІҢ КЕШЕНДІ ТЕХНОЛОГИЯСЫН
ӘЗІРЛЕУ
Аннотация. Пиритті күйіктерді өңдеу қолданыстағы әдістерді жетіл- діруді қажет етеді. Жұмыста пайдаланылған технологияның жаңалығы – натрий гидрокарбонатының ерітіндісіндегі пиритті күйіктерге алдын- ала химиялық белсендіруді жүргізу болып табылады. Белсендірудің нәти- жесінде фазалық құрамда өзгерістер болатыны анықталды: үшнатрийлі фосфаты мырыш гидрат оксиді мен доломит фазалары жоғалды; натрий тиофосфаты фазасының саны артты; альбит және натрожарозит фазасының саны азайды; магний алюмосиликатының, кальций силикаты және натрий тиофосфат фазалары пайда болды. Пиритті күйіктердің фазалық құрамының өзгеруі натрий гидрокарбонатының үшнатрийлі фосфаты мырыш оксиді гидрат және, натрожарозит натрий тиофосфатын, кальций силикаты мен магний алюмосиликатының пайда болатын доломитпен өзара әрекеттесу реакцияларының жүруімен байланысты. Тиімді жағдайда 15% Н2ЅО4 ерітіндісінде пирит күйіктерін шаймалау кезінде ерітіндіге өтуі алынды, салм. %: CuO 76.8; ZnO 75.9 және Fe2O3 26.0. Химиялық белсендірудің күкірт қышқылы ерітіндіге түсті металдарды алу дәрежесі 15-20 % төмен. Пирит қүйіктерін шаймалау ерітіндісін стадиялық бейтараптандыру нәтижесінде рН 9,7 кезінде түсті металдар концентраты алынды, салм. %: CuO 6,4;
ZnO 12,55. Концентрат шығымы пирит күйіктерінің бастапқы салмағының 1,5%-ын құрады. Пирит күйіктерді сілтісіздендіру кенін балқыту кезінде химиялық құрамы бар шойын түріндегі шойын алынды, салм. %: 91,13 Fe;
3.99 Si; н/о P; 2,57 C; 0,81 Mn; 0,025 S.
Түйін сөздер: пиритті күйіктер, химиялық белсендіру, фазалық құрам, түсті металдар, шаймалау, концентрат, шойын.
Е.Б. Абикак*, Б.К. Кенжалиев
Satbayev University, АО Институт металлургии и обогащения, Алматы, Казахстан.
E-mail: [email protected]
РАЗРАБОТКА КОМПЛЕКСНОЙ ТЕХНОЛОГИИ ПЕРЕРАБОТКИ ПИРИТНЫХ ОГАРКОВ С ПРЕДВАРИТЕЛЬНОЙ ХИМИЧЕСКОЙ
АКТИВАЦИЕЙ
Аннотация. Существующие способы переработки пиритных огарков требуют совершенствования. Новизной технологии, использованной в работе, является проведение предварительной химической активации пиритных огарков в растворе гидрокарбоната натрия. Установлено, что в результате активации происходят изменения фазового состава: исчезли фазы тринатрий фосфата цинка оксида гидрата и доломита; увеличилось количество фазы тиофосфата натрия; уменьшилось количество фазы альбита и натрожарозита; появилась фаза алюмосиликата магния, силиката кальция и тиофосфата натрия. Изменения фазового состава пиритных огарков связаны с протеканием реакций взаимодействия гидрокарбоната натрия с тринатрий фосфат цинк оксид гидратом, натрожарозитом и с доломитом с образованием тиофосфата натрия, силиката кальция и алюмосиликата магния. При выщелачивании пиритных огарков в 15%
растворе Н2SO4 получено извлечение в раствор, мас. %: CuO 76,8; ZnO 75,9 и Fe2O3 26,0. Без химической активации степень извлечения цветных металлов в сернокислый раствор ниже на 15 – 20%. В результате стадийной нейтрализации раствора выщелачивания пиритных огарков при рН 9,7 получен - концентрат цветных металлов, мас. %: CuO 6,4; ZnO 12,55. Выход концентрата составил 1,5% от исходной массы пиритных огарков. При плавке кека выщелачивания пиритных огарков получен кричный чугун с химическим составом, масс %: 91,13 Fe; 3.99 Si; н/о P; 2,57 C; 0,81 Mn;
0,025 S.
Ключевые слова: пиритные огарки, химическая активация, фазовый состав, цветные металлы, выщелачивание, концентрат, кричный чугун.
Introduction. Since the last century the main method of sulphuric acid production has been roasting of pyrite concentrate (Chernyshev A.K., et all 2014). Pyrite is an iron mineral of sulphide class that often contains admixtures of gold, cobalt, copper and other non-ferrous metals. The pyrite slag, formed after roasting, is deposited that creates a real hazard of water and air pollution; at the
same time, they are a valuable source of ferrous, non-ferrous and noble metals that is not used until now due to the lack of economically viable technologies.
In this regard, the development of an efficient, integrated technology for the processing of pyrite slag is relevant.
Pyritic slag is equivalent to good iron ores in terms of iron content (50-60%), but its use for smelting cast iron is hindered by the presence of non-ferrous metals and sulphur in it. Therefore, the processing flowchart should ensure a sufficiently complete extraction of non-ferrous metals and obtain a product suitable for blast furnace smelting.
The main method intended to process pyrite slag, introduced in a number of countries, is chlorinating or sulphatizing roasting followed by leaching of non-ferrous metal compounds (Beregovsky V.I., et all 1973; Güntner, J., Hammerschmidt, J., 2012; Zabereshs I.I., 1967)
The method (Beregovsky V.I., et all, 1973) provides low-temperature (550-600
oC) chlorinating roasting of slag with table salt (or calcium chloride) introduced at Duisburg Plant in Germany. But the necessity of leaching of excessively large volumes of chlorinated slag for the extraction of non-ferrous metals is one of the drawbacks reducing its practical importance.
In Finland and Zambia, the initial concentrate is subjected to sulphate or dissolution roasting followed by hydrometallurgical processing of the slag (Güntner, J., Hammerschmidt, J., 2012). The process developed by the
“Outokumpu” company includes melting of pyrite concentrates in a neutral atmosphere with sublimation of sulphur to produce a troilite matte, removal of slag, granulation of the matte in water and its oxidation roasting. The method allows to obtain a product containing up to 67% of iron, but does not provide for the extraction of non-ferrous and noble metals (Zabereshs I.I., 1967).
In more recent developments, the method involving heating of the cake and its smelting in the presence of reducing agent and flux mixtures, consisting of CaO and Аl2О3 - containing materials, and the processing of resulting iron-based alloy with solid oxidizing agents, containing calcium sulfate (Patent 2172788 RU, 2001), in some cases SiO2 are used as a flux (Patent 2394924 RU). The disadvantage of the methods is the low extraction of noble metals.
All the described methods are pyrometallurgical and are energy intensive.
Recently great attention is given to hydrometallurgical methods intended to process of pyrite slag that require improvement for complete utilization with extraction of useful components - nonferrous, noble metals and iron.
The method (Patent 2623948 RU, 2017) includes preliminary four-stage leaching of nonferrous metals with water and sulphuric acid solution followed by leaching of noble metals with hydrochloric acid thiocarbamide solution.
The method allows separation of blister copper, iron oxide pigment, zinc oxide
into separate products and extraction of noble metals from thiocarbamide hydrochloride solution.
The disadvantages of the method are the low extraction of iron and noble metals from the slag, as well as the contamination of obtained iron oxide pigments with impurities of non-ferrous metals.
The method of deep processing of pyrite slag including leaching of non- ferrous metals by bacterial complex is known (Patent 2397260 RU, 2013).
Disadvantages of this method are long duration of bacterial leaching and complexity of cultivation process of acidophilic thionic bacteria.
In the conducted studies for the complex processing of pyrite slag the method of preliminary chemical activation of mineral raw materials was used that promotes the disintegration and phase changes (Patent 32333 KZ, 2017; Gladyshev S.V., Kenzhaliev B.K., et all 2018; Abdulvaliev R.A., et all 2021; Dyusenova S.B., et all 2019). The method consists in thermal processing with a solution of sodium hydrogen carbonate. Due to conditions of chemical activation modification of hard-to-recover phases and disclosure of mineral structure due to separation of non-metallic materials takes place.
In researches optimum conditions of preliminary chemical activation corresponding to features of mineral structure of pyrite slag have been determined.
Positive effect of activation is confirmed by results of non-ferrous metals leaching from pyrite slag in sulphuric acid solution. The optimum leaching regime was established.
Research materials and methods. The source material for the study was a significant sample of pyrite slag from the sulphuric acid production of the Tselinny Mining and Chemical Plant in the Republic of Kazakhstan.
X-ray fluorescence, chemical and X-ray phase analyses were used in the work.
X-ray fluorescence analysis was performed on Venus 200 spectrometer with wave dispersion (PA Nalyical B.V., Holland).
Chemical analysis of samples was performed on an optical emission spectrometer with inductively coupled plasma (Optima 8300 DV, Perkinelmer, Waltham, MA, USA). The random error component is 2.0%.
X-ray phase analysis was performed using a D8 Advance (Bruker, Billerica, Massachusetts, USA) with Cu KΑ radiation obtained at 40 kV and 40 mA.
Processing of diffraction patterns and calculation of interplanar distances were performed using EVA software, while phase identification was performed using the search/comparison program and the PDF-2 powder diffraction database.
Thermal analysis was performed using a Jupiter STA 449 F3 simultaneous thermal analysis device. Before heating, the furnace space was pumped out (achievable vacuum level ~ 92%) and then purged with inert gas for 5 minutes.
The heating was performed at a rate of 100 C/min in an atmosphere of highly
purified argon. The total volume of incoming gas was maintained between 100 and 110 ml/min. Results obtained with the STA 449 F3 Jupiter were analyzed using the NETZSCHProteus software.
Microphotographs were taken using a JEOL low vacuum scanning electron microscope with thermal emission cathode (LaB6) JSM-6610LV equipped with a system of energy dispersion (ED) microanalysis, a system of wave dispersion microanalysis, a system of backscattered electron diffraction analysis, a reflected electron detector, an Everhart-Thornley secondary electron detector and a secondary electron detector for low vacuum mode.
Mössbauer spectroscopy was performed on a Mössbauer spectrometer - SM 2201. The source was cobalt 57 in a rhodium matrix, activity 100 mCi. Spectra were analyzed on PC by the method of “least squares”. Values of isomeric shifts (Is) are given relative to -Fe.Temperature of spectra taking - 293 K. Imaging mode “at light”.
Analysis of ICS was obtained on FT-IR spectrometer “Avatar 370CsI” in the spectral range 4000-300 cm-1 from the tablets prepared by pressing 2 mg of sample and 200 mg of KBr. The spectrum of KBr was taken as a comparison spectrum. Experiment set-up: Transmission E.S.P.
Chemical pyrite slag activation was performed in a solution containing 40 to 120 g/dm3 NaHCO3 at L:S=2-10.0 and a temperature of 90-2300, using a thermostatically controlled unit with 4 autoclaves rotating through the head and a working volume of 250 cm3.
The activation time ranged from 30 to 300 minutes. The maximum sodium hydrogen carbonate content of 120 g/dm3 in the solution was chosen taking into account its solubility limit.
Results and discussion. As a result of sieve analysis of samples of pyrite slag it was found that in the class +2.5 mm the content of useful components - noble metals, non-ferrous metals and iron is much lower (table 1).
Table 1 - Chemical composition of classes of pyrite slag
Сomposition,
% Grain size class, mm
+2.5 -2.5+1.0 -1.0+0.25 -0.25+0.1 -0.1+0.056 -0.056
Nа2О 2.44 1.43 1.19 0.959 0.75 0.71
MgO 3.29 0.65 0.67 0.483 0.41 0.39
Аl2ОЗ 10.96 6.92 6.37 4.163 3.11 3.03
SiО2 39.73 27.09 25.18 16.13 11.89 11.44
Р2О5 0.26 1.26 1.1 0.956 0.84 0.82
SO3 0.51 7.33 8.1 7.725 6.35 6.1
СаО 9.72 2.84 2.62 1.949 1.41 1.2
TiО2 1.26 0.42 0.37 0.25 0.178 0.16
Fе2ОЗ 7.63 41.63 45.63 60.94 70.187 71.16
CuO 0.02 0.2 0.22 0.26 0.261 0.28
ZnO 0.04 0.4 0.4 0.61 0.604 0.66
As2O3 0.06 0.19 0.25 0.26 0.258 0.26
SeO2 0.003 0.51 1.01 0.57 0.23 0.19
BaO 0.186 2.07 2.33 2.81 2.866 3.01
HgO - 0.09 0.19 0.14 0.055 0.04
PbO 0.005 0.15 0.17 0.2 0.185 0.21
п.п 22.266 6.29 3.61 1.237 0.146 0.08
Au, g/t 0.021 1.58 2.68 2.69 2.24 2.88
Ag, g/t 0.1 11.2 16.2 19.3 21.4 22.3
Yield, % 31.0 6.2 5.5 20.8 34.3 2.2
Magnetic separation determined that the class + 2.5 mm is not a magnetic fraction, and the class - 2.5 mm + 0 is a highly magnetic fraction, it was separated at the magnetic field strength of 200 - 400 oersted.
Chemical composition of the magnetic fraction of pyrite slag of size class - 2.5 mm + 0 wt.%: Na2O 1.4; MgO 0.74; Al2O3 5.69; SiO2 23.22; P2O5 1.1; SO3 6.24; Cl0.01; K2O 0.44; CaO 2.52; TiO2 0.32; Fe2O3 52.84; CuO 0.25; ZnO 0.53;
As2O3 0.24; SeO2 0.3; BaO 2.4; HgO 0. 08; PbO 0.16; p.p. 1.82; noble metal content, g/t: Au 2.69; Ag 19.3.
The phase composition of the magnetic fraction of pyrite slag is presented, wt. %: maghemite 24.1, hematite 18.1, quartz 17.2, albite 10.2, trisodium phosphate zinc oxide hydrate 9.5, sodium aluminosilicate 6.7, barium ferrite 4.7, natrozharosite 4.2, sodium thiorphosphate 2.8 and dolomite 2.5 (Figure 1).
Figure 1. X-ray phase analysis of the magnetic fraction of pyrite slag of grain size class - 2.5 mm + 0
Chemical composition of the nonmagnetic fraction of pyrite slag of grain size class - - + 2.5 mm wt.%: Na2O 2.44; MgO 0.3.29; Al2O3 10.96; SiO2 39.73; P2O5 0.26; SO3 0.51; Cl–0.01; K2O 0.8; CaO 2.72; TiO2 1.26; Fe2O3 7.63; CuO 0.02;
ZnO 0.04; As2O3 0.06; SeO2 0.003; BaO 0.186; PbO 0.005; other prod. 23.076;
noble metal content, g/t: Au 0.021; Ag 0.1.
The phase composition of the non-magnetic fraction of pyrite slag is presented, wt. %: magnemite 2.1; hematite 1.4; quartz 29.9; albite 18.2; dolomite 18.2;
calcite 17.3; clinochlorite 7.7; muscovite 3.5; and gibbsite 1.4.
Figure 2. Thermogram of pyrite slag before activation
According to thermal analysis a peak at 334.4oC (Figure 2) reflects the oxidation of divalent iron in fine-dispersed magnetite.
Exothermic peaks (334.4oC, 421oC, 548.3oC) are associated with oxidation and decomposition of residual sulfides. Among them, arsenopyrite, chalcopyrite, realgar (AsS) and elemental sulfur.
Combination of endothermic effects with extremums at 361,7oC, 503,2oC , inflection at 7640oC and exothermic effect with the peak at 421oC on the DTA curve reflects the presence of hydrolomite (50% hydromagnesite + 50%
calcite). The decomposition of calcite in this sample is in the region of minimum development at 746.2oC on the DTA curve. Combination of endothermic effects with extremums at 147.2oC, 158.3oC and 279.8oC on the DTA curve and inflection at 7640oC on the DTA curve is connected to display of metasideronatrite Na2Fe3+[SО4]2(ОН)1,5Н2О decomposition. Weak endothermic effect with extremum at 557.7oC on the DTA curve is a reflection of quartz inversion. The combination of endothermic effect with extremum at 503.2oC, kink at 764oC and exothermic effect with the peak at 548.3oC on the DTA curve presumably may be connected with occurrence of natrozharosite: NaFe+3 [SО] (ОН).
Figure 3. Thermogram of pyrite slag after activation
An increase in the number of effects as well as a shift in the temperature of individual peaks was observed at the dDTA after chemical activation (Figure 3) compared with the dDTA of the original sample. Thus, the oxidation peak of divalent iron in magnetite has shifted towards lower temperatures. The endothermic effect with the extremum at 503.2oC in the DTA of the initial sample in the considered sample appeared at 489.80oC. The inflection at 764oC turned into a full endothermic effect with extremum at 750oC.
The exothermic effect with a peak at 322.90oC may reflect the first stage of oxidation of divalent iron in magnetite. The second stage of oxidation of divalent iron in magnetite was also revealed in this sample. This is an exothermic effect with a peak at 764oC. As in the original sample, exothermic effects in the temperature range of 300 - 700oC can be associated with oxidation and decomposition of residual sulfides, as well as oxidation of elemental sulfur.
The 682.4oC peak may reflect oxidation of pyrrhotite by residual oxygen. At 700 - 950oC, carbonates such as magnesite, calcite and ankerite can decompose.
The weak endothermic effect with extremum at 800.5oC on the dTAm curve may be a reflection of a polymorphic transformation of barium carbonate. The presence of hydrololomite in the superposition is not excluded. Combination of endothermic effects with extremums at 489.8oC, 750oC is manifestation of jarosite decomposition, carphosiderite – Fe33+[SO4]2(OH)52H2O. An impurity of metasideronatrite Na2Fe3+[SО4]2(ОН)1,5Н2О (160oC, 275.8oC, 750oC) may also be present in the superposition. Weak endothermic effect with extremum at 557.7oC on the dDTA curve may be a reflection of quartz inversion.
By infrared spectroscopy an increase of CaCO3 carbonate phase (peaks 1419, 880 cm-1 in the original sample (Moenke H., 1962) and peaks 1794, 1431, 876, 713 см-1 in the sample after activation) was determined in pyrite slag.
41
ISSN 2224-5278 3. 2022
333372396474 535542 590 609630 667693 727 744761779798880917 100710311096 1116 11681384 14061419
1622
34003544361936493695
0 10 20 30 40 50 60 70 80 90 100
Пропускание
500 1000
1000 2000
3000 4000
Волновое число (см-1)
327373 395
474 534 542
588 611 630693 713 727 7437597797958769161011 10231031 10941182
1431
16361794
3381362036513697
0 10 20 30 40 50 60 70 80 90 100
Пропускание
500 1000
1000 2000
3000 4000
Волновое число (см-1)
333372396474 535542 590 609630 66769377979891 100710311096 1116 116813 1406
16
34003619364936
0 10 20 30 40 50 60 70
Пропускание
500 1000
1000 2000
3000 4000
Волновое число (см-1)
327373 395
474 534 542
588 611 630693 713 727 7437597797958769161011 10231031 10941182
1431
16361794
3381362036513697
0 10 20 30 40 50 60 70 80 90 100
Пропускание
500 1000
1000 2000
3000 4000
Волновое число (см-1)
a b
Figure 4. Infrared spectrum of pyrite slag: a - before activation;
b - after activation
Mineralogical analysis of pyrite slag was performed in combination with scanning electron microscopy and X-ray microanalysis.
As a result of the analysis of magnetic fraction of initial pyrite slag was found: native iron (Figure 5), iron oxide (Figure 6), chalcopyrite (Figure 7), galena (Figure 8), quartz (Figure 9), pyrite (Figure 10), plagioclase (Figure 11), potassium barium feldspar K(AlSi3O8) – Ba(Al2Si2O8) (figure 12), barite (figure 13), forsterite (figure 14), chromospinelide (figure 15), and sphalerite ZnS (figure 16).
Figure 5. Native iron, x 1100 Figure 6 .Iron oxide, x 1400 Figure 5. Native iron, x 1100 Figure 6 .Iron oxide, x 1400
42
N E W S of the National Academy of Sciences of the Republic of Kazakhstan Figure 5. Native iron, x 1100 Figure 6 .Iron oxide, x 1400
Figure 7. Chalcopyrite, x 3 300 Figure 8. Galenite, x 3 300 Figure 7. Chalcopyrite, x 3 300 Figure 8. Galenite, x 3 300
Figure 9. Quartz, x 1 200 Figure 10. Pyrite, x 150 Figure 9. Quartz, x 1 200 Figure 10. Pyrite, x 150
43
ISSN 2224-5278 3. 2022 Figure 9. Quartz, x 1 200 Figure 10. Pyrite, x 150
Figure 11. Plagioclase, x 1300 Figure 11. Plagioclase, x 1300 Figure 12. Potassium barium feldspar, x 1200Figure 12. Potassium barium feldspar, x 1200
Figure 13. Barite, x 950 Figure 13. Barite, x 950 Figure 14. Forsterite, x 500Figure 14. Forsterite, x 500
44
N E W S of the National Academy of Sciences of the Republic of Kazakhstan Figure 13. Barite, x 950 Figure 14. Forsterite, x 500
Figure 15. Chromospinelid, x 500 Figure 15. Chromospinelid, x 500 Figure 16. Sphalerite, x 1100Figure 16. Sphalerite, x 1100
Figure 17. Apatite, x 1500
Figure 18. Iron oxide, x 200
Figure 17. Apatite, x 1500
Analysis has shown that in the initial sample of pyrite slag iron minerals, pyrite, titanomagnetite and others are often connected with non-metallic material that causes difficulties in processing during extraction of nonferrous, noble metals and iron.
By results of the electron-microscopic analysis of a magnetic fraction of pyrite slag after chemical activation in optimum conditions are found: iron oxide (figure 18), sphalerite (figure 19), barite (figure 20), native iron (figure 21), tin - bismuth (figure 22), gallite - bismuth (figure 23).
45
ISSN 2224-5278 3. 2022 Figure 17. Apatite, x 1500
Figure 18. Iron oxide, x 200
Figure 19. Sphalerite, x 850
Figure 18. Iron oxide, x 200
Figure 17. Apatite, x 1500
Figure 18. Iron oxide, x 200
Figure 19. Sphalerite, x 850
Figure 19. Sphalerite, x 850
Figure 20. Barite, x 500
Figure 21. Native iron, x 1 100
Figure 22 . Tin - bismuth, x 1,800
Figure 23. Gallite - bismuth, x 1,800
Figure 20. Barite, x 500Figure 20. Barite, x 500
Figure 21. Native iron, x 1 100
Figure 22 . Tin - bismuth, x 1,800
Figure 23. Gallite - bismuth, x 1,800
Figure 21. Native iron, x 1 100
N E W S of the National Academy of Sciences of the Republic of Kazakhstan Figure 20. Barite, x 500
Figure 21. Native iron, x 1 100
Figure 22 . Tin - bismuth, x 1,800
Figure 23. Gallite - bismuth, x 1,800
Figure 22 . Tin - bismuth, x 1,800
Figure 21. Native iron, x 1 100
Figure 22 . Tin - bismuth, x 1,800
Figure 23. Gallite - bismuth, x 1,800
Figure 23. Gallite - bismuth, x 1,800
The microphotographs of the slag after chemical activation show that grains of ore minerals are more free from non-metallic minerals (feldspar, plagioclase, forsterite, chromitespinelide).
X-ray phase analysis of samples of pyrite slag after chemical activation in a solution of sodium hydrogen carbonate depending on temperature (90 – 230оС), duration (30 – 300 minutes), L:S ratio (2÷10: 1) and NaHCO3 concentration (40-120 g/dm3) showed that what is in optimal conditions the maximum changes in the phase and chemical composition of cinders occur at temperature 120оС, duration 30 - 60 min, ratio L:S=4:1 and concentration of NaHCO3 solution 60 g/
dm3.
As a result of chemical activation of pyrite slag under optimal conditions, there were changes in the phase composition: the phases of zinc phosphate trisodium hydrate and dolomite disappeared; the amount of sodium thiophosphate phase increased; the amount of albite and natroharosite phases decreased; the phase of magnesium aluminosilicate, calcium silicate, carbonate and ferrite of sodium appeared.
In these conditions the chemical composition of pyrite slag after activation under optimum conditions is presented by wt. %: Na2O 1.59; MgO 0.73; Al2O3 5.63; SiO2 22.3; P2O5 0.59; SO3 3.45; Cl0.01; K2O 0.43; CaO 2.64; TiO2 0.31;
Fe2O3 51.89; CuO 0.24; ZnO 0.52; As2O3 0.16; SeO2 0.25; BaO 2.32; HgO 0.09;
PbO 0.16; other prod. 6.69.
After activation, the content of P2O5, SO3 and As2O3 in pyrite slag decreased by 46.36%, 44.31% and 33.3%, respectively.
The phase composition of pyrite cinder samples after chemical activation under optimal conditions is shown in Table 2 and in the Figure 24.
Table 2 - Phase composition of pyrite slag samples after chemical activation under optimum conditions
Name Composition, %
Magemite Fe2O3 28.4
Hematite Fe2O3 21.8
Quartz SiO2 14.7
Albite Na(AlSi3O8) 8.7
Trinatrium phosphate zinc oxide hydrate Na3Zn4O(PO4)3(H2O)6 - Sodium aluminosilicate NaAl3Si3O11 6.0
Barium ferrite BaFe2O4 6.2
Natrozharosite (Na0.67(H3O)0.33)Fe3(SO4)2(OH)6 4.3
Sodium thiophosphate Na2P2S6 5.7
Dolomite CaMg(CO3)2 -
Magnesium aluminosilicate (MgAl2Si3O10)0,6 2.5
Calcium silicate CaSiO3 1.7
Figure 24. X-ray of pyrite slag after chemical activation under optimum conditions
Changes in the phase composition of pyrite slag during chemical activation can be attributed to the course interaction reactions with sodium bicarbonate:
2NaAl3Si3O11+2NaHCO3+3MgO→3Al2MgO8Si2+2Na2
CO3+H2O ΔG -1911.37 kJ/mol
2Na3Zn4O(PO4)3(H2O) + 2NaHCO3 → 3Na2P2O6 +
8Zn(OH)2 + Na2CO3 + CO2 +5H2O ΔG -1778.23 kJ/mol CaMg(CO3)2 + 2NaHCO3 + SiO2 → CaSiO3 + MgCO3 +
Na2CO3 + 2CO2 + H2O ΔG -38.7022 kJ/mol
2BaO + 2NAHCO3 → 2 BaCO3 + Na2O + H2O ΔG -161.003 kJ/mol 2BaO + 2NaHCO3 + Fe2O3 → BaFe12O19 + Na2CO3 +
BaCO3 + H2O ΔG -188.837 kJ/mol
The influence of preliminary chemical pyrite slag activation on extraction of non-ferrous metals and iron during leaching in sulphuric acid solutions was studied.
Leaching of pyrite slag after activation was performed in Н2SO4 solutions containing 5-20% at temperature 60оС and duration of 30 minutes (Figure 25).
Figure 25. Extraction of non-ferrous metals and iron from pyrite stubs into solution of H2SO4
According to the data obtained, optimum is the use of sulphuric acid solution with concentration of 15% Н2SO4 for leaching. Under these conditions the extraction into sulphuric acid solution was, %: %: Cu2+ 76.8; Zn2+ 75.9 and Fe3+
26.0.
To compare the results obtained, pyrite stubs were leached without activation, and the degree of extraction of non-ferrous metals into a sulfuric acid solution was 15-20% lower.
To obtain non-ferrous metals concentrate the sulphuric acid leaching solution was neutralized with potash in several stages (Table 3).
Table 3 - Chemical composition of neutralisation deposits as a function of solution pH
Composition, % рН
3.7 5.46 9.7
K2О 0.11 0.08 13.8
MgO - - 1.2
Аl2ОЗ 0.12 3.0 7.5
SiО2 0.12 1.2 2.9
Р2О5 25.27 3.5 0.02
SO3 8.3 11.08 15.9
Fе2ОЗ 53.37 19.3 3.8
CuO - 0.04 6.4
ZnO - 0.01 12.54
As2O3 3.08 0.39 -
SeO2 0.1 0.01 -
Neutralisation to pH 3.7 was performed to deposit trivalent iron from the solution. Under these conditions phosphorus, arsenic and selenium partly settled out of solution together with iron.
At pH 5.46 iron, phosphorus and arsenic remnants were separated into a neutralisation deposit from the solution.
Neutralisation to pH 9.7 was performed taking into account the pH of complete precipitation of zinc and copper. As a result, the concentrate of non-ferrous metals with content, wt. % was received: CuO 6.4; ZnO 12.55. The concentrate yield was 8.5% of the total amount of neutralization deposits or 1.5% of the initial mass of pyrite slag. The yield of neutralization residue at pH 5.46 was 2.1%, at pH 9.7 – 14.2%.
From the obtained results it follows, that neutralization for separation of Fe2O3, P2O5 and As2O3 impurities and for production of concentrate of non- ferrous metals should be performed in two stages up to pH 5.46 and 9.7.
For complex processing of pyrite slag, cast iron was obtained from iron- containing cakes leaching pyrite slag in sulphuric acid solution.
Smelting of cast iron was performed based on obtaining metallic iron in the form of blooming cast iron.
The quality of the bloom depends on the composition of the slag produced.
For good quality, slags containing 50 – 60% SiO, 10 – 20% Al O 3 and 15 –