• Ешқандай Нәтиже Табылған Жоқ

Просмотр «№ 6 (2017): Вестник НАН РК»

N/A
N/A
Protected

Academic year: 2024

Share "Просмотр «№ 6 (2017): Вестник НАН РК»"

Copied!
230
0
0

Толық мәтін

(1)

ISSN 1991-3494 (Print) ҚАЗАҚСТАН РЕСПУБЛИКАСЫ

ҰЛТТЫҚ ҒЫЛЫМ АКАДЕМИЯСЫНЫҢ

Х А Б А Р Ш Ы С Ы

ВЕСТНИК

НАЦИОНАЛЬНОЙ АКАДЕМИИ НАУК РЕСПУБЛИКИ КАЗАХСТАН

THE BULLETIN

OF THE NATIONAL ACADEMY OF SCIENCES OF THE REPUBLIC OF KAZAKHSTAN

1944 ЖЫЛДАН ШЫҒА БАСТАҒАН ИЗДАЕТСЯ С 1944 ГОДА

PUBLISHED SINCE 1944

АЛМАТЫ NOVEMBER АЛМАТЫ 2017 НОЯБРЬ ALMATY ҚАРАША

(2)

Б а с

р е д а к т о р ы х. ғ. д., проф., ҚР ҰҒА академигі

М. Ж. Жұрынов

Р е д а к ц и я а л қ а с ы:

Абиев Р.Ш. проф. (Ресей)

Абишев М.Е. проф., корр.-мүшесі (Қазақстан) Аврамов К.В. проф. (Украина)

Аппель Юрген проф. (Германия)

Баймуқанов Д.А. проф., корр.-мүшесі (Қазақстан) Байпақов К.М. проф., академик (Қазақстан) Байтулин И.О. проф., академик (Қазақстан) Банас Иозеф проф. (Польша)

Берсимбаев Р.И. проф., академик (Қазақстан) Велихов Е.П. проф., РҒА академигі (Ресей) Гашимзаде Ф. проф., академик (Əзірбайжан) Гончарук В.В. проф., академик (Украина) Давлетов А.Е. проф., корр.-мүшесі (Қазақстан) Джрбашян Р.Т. проф., академик (Армения)

Қалимолдаев М.Н. проф., академик (Қазақстан), бас ред. орынбасары Лаверов Н.П. проф., академик РАН (Россия)

Лупашку Ф. проф., корр.-мүшесі (Молдова) Мохд Хасан Селамат проф. (Малайзия)

Мырхалықов Ж.У. проф., академик (Қазақстан) Новак Изабелла проф. (Польша)

Огарь Н.П. проф., корр.-мүшесі (Қазақстан) Полещук О.Х. проф. (Ресей)

Поняев А.И. проф. (Ресей)

Сагиян А.С. проф., академик (Армения) Сатубалдин С.С. проф., академик (Қазақстан) Таткеева Г.Г. проф., корр.-мүшесі (Қазақстан) Умбетаев И. проф., академик (Қазақстан) Хрипунов Г.С. проф. (Украина)

Юлдашбаев Ю.А. проф., РҒА корр-мүшесі (Ресей) Якубова М.М. проф., академик (Тəжікстан)

«Қазақстан Республикасы Ұлттық ғылым академиясының Хабаршысы».

ISSN 2518-1467 (Online), ISSN 1991-3494 (Print)

Меншіктенуші: «Қазақстан Республикасының Ұлттық ғылым академиясы»РҚБ (Алматы қ.)

Қазақстан республикасының Мəдениет пен ақпарат министрлігінің Ақпарат жəне мұрағат комитетінде 01.06.2006 ж. берілген №5551-Ж мерзімдік басылым тіркеуіне қойылу туралы куəлік

Мерзімділігі: жылына 6 рет.

Тиражы: 2000 дана.

Редакцияның мекенжайы: 050010, Алматы қ., Шевченко көш., 28, 219 бөл., 220, тел.: 272-13-19, 272-13-18, www: nauka-nanrk.kz, bulletin-science.kz

© Қазақстан Республикасының Ұлттық ғылым академиясы, 2017 Типографияның мекенжайы: «Аруна» ЖК, Алматы қ., Муратбаева көш., 75.

(3)

Г л а в н ы й

р е д а к т о р д. х. н., проф. академик НАН РК

М. Ж. Журинов

Р е д а к ц и о н н а я к о л л е г и я:

Абиев Р.Ш. проф. (Россия)

Абишев М.Е. проф., член-корр. (Казахстан) Аврамов К.В. проф. (Украина)

Аппель Юрген проф. (Германия)

Баймуканов Д.А. проф., чл.-корр. (Казахстан) Байпаков К.М. проф., академик (Казахстан) Байтулин И.О. проф., академик (Казахстан) Банас Иозеф проф. (Польша)

Берсимбаев Р.И. проф., академик (Казахстан) Велихов Е.П. проф., академик РАН (Россия) Гашимзаде Ф. проф., академик (Азербайджан) Гончарук В.В. проф., академик (Украина) Давлетов А.Е. проф., чл.-корр. (Казахстан) Джрбашян Р.Т. проф., академик (Армения)

Калимолдаев М.Н. академик (Казахстан), зам. гл. ред.

Лаверов Н.П. проф., академик РАН (Россия) Лупашку Ф. проф., чл.-корр. (Молдова) Мохд Хасан Селамат проф. (Малайзия)

Мырхалыков Ж.У. проф., академик (Казахстан) Новак Изабелла проф. (Польша)

Огарь Н.П. проф., чл.-корр. (Казахстан) Полещук О.Х. проф. (Россия)

Поняев А.И. проф. (Россия)

Сагиян А.С. проф., академик (Армения) Сатубалдин С.С. проф., академик (Казахстан) Таткеева Г.Г. проф., чл.-корр. (Казахстан) Умбетаев И. проф., академик (Казахстан) Хрипунов Г.С. проф. (Украина)

Юлдашбаев Ю.А. проф., член-корр. РАН (Россия) Якубова М.М. проф., академик (Таджикистан)

«Вестник Национальной академии наук Республики Казахстан».

ISSN 2518-1467 (Online), ISSN 1991-3494 (Print)

Собственник: РОО «Национальная академия наук Республики Казахстан» (г. Алматы)

Свидетельство о постановке на учет периодического печатного издания в Комитете информации и архивов Министерства культуры и информации Республики Казахстан №5551-Ж, выданное 01.06.2006 г.

Периодичность: 6 раз в год Тираж: 2000 экземпляров

Адрес редакции: 050010, г. Алматы, ул. Шевченко, 28, ком. 219, 220, тел. 272-13-19, 272-13-18.

www: nauka-nanrk.kz, bulletin-science.kz

© Национальная академия наук Республики Казахстан, 2017 Адрес типографии: ИП «Аруна», г. Алматы, ул. Муратбаева, 75

(4)

E d i t o r

i n

c h i e f

doctor of chemistry, professor, academician of NAS RK М. Zh. Zhurinov

E d i t o r i a l b o a r d:

Abiyev R.Sh. prof. (Russia)

Abishev М.Ye. prof., corr. member. (Kazakhstan) Avramov K.V. prof. (Ukraine)

Appel Jurgen, prof. (Germany)

Baimukanov D.А. prof., corr. member. (Kazakhstan) Baipakov K.М. prof., academician (Kazakhstan) Baitullin I.О. prof., academician (Kazakhstan) Joseph Banas, prof. (Poland)

Bersimbayev R.I. prof., academician (Kazakhstan) Velikhov Ye.P. prof., academician of RAS (Russia) Gashimzade F. prof., academician ( Azerbaijan) Goncharuk V.V. prof., academician (Ukraine) Davletov А.Ye. prof., corr. member. (Kazakhstan) Dzhrbashian R.Т. prof., academician (Armenia)

Kalimoldayev М.N. prof., academician (Kazakhstan), deputy editor in chief Laverov N.P. prof., academician of RAS (Russia)

Lupashku F. prof., corr. member. (Moldova) Mohd Hassan Selamat, prof. (Malaysia)

Myrkhalykov Zh.U. prof., academician (Kazakhstan) Nowak Isabella, prof. (Poland)

Ogar N.P. prof., corr. member. (Kazakhstan) Poleshchuk О.Kh. prof. (Russia)

Ponyaev А.I. prof. (Russia)

Sagiyan А.S. prof., academician (Armenia) Satubaldin S.S. prof., academician (Kazakhstan) Tatkeyeva G.G. prof., corr. member. (Kazakhstan) Umbetayev I. prof., academician (Kazakhstan) Khripunov G.S. prof. (Ukraine)

Yuldashbayev Y.A., prof. corresponding member of RAS (Russia) Yakubova М.М. prof., academician (Tadjikistan)

Bulletin of the National Academy of Sciences of the Republic of Kazakhstan.

ISSN 2518-1467 (Online), ISSN 1991-3494 (Print)

Owner: RPA "National Academy of Sciences of the Republic of Kazakhstan" (Almaty)

The certificate of registration of a periodic printed publication in the Committee of Information and Archives of the Ministry of Culture and Information of the Republic of Kazakhstan N 5551-Ж, issued 01.06.2006

Periodicity: 6 times a year Circulation: 2000 copies

Editorial address: 28, Shevchenko str., of. 219, 220, Almaty, 050010, tel. 272-13-19, 272-13-18, http://nauka-nanrk.kz /, http://bulletin-science.kz

© National Academy of Sciences of the Republic of Kazakhstan, 2017

Address of printing house: ST "Aruna", 75, Muratbayev str, Almaty

(5)

Information messages

BULLETIN OF NATIONAL ACADEMY OF SCIENCES OF THE REPUBLIC OF KAZAKHSTAN

ISSN 1991-3494

Volume 6, Number 370 (2017), 5 – 12

UDC 541.183; 547.532:542.943; 547.91:542.943

M. Auyelkhankyzy1, 2, M. Abbasi1, N. Slavinskaya1, Z. Mansurov2

1Institute of Combustion Technology (DLR), Stuttgart, Germany,

2Al-Farabi Kazakh National University, Almaty, Kazakhstan.

E-mail: auyelkhankyzy@gmail.com

REACTION MECHANISM

FOR THE OXIDATION OF ALLENE AND PROPYNE

Abstract. The study of detailed chemistry of allene and propyne in hydrocarbon combustion are very impor- tant, because they are precursors of propargyl radical (H2CCCH). Propargyl radical plays a main role in formation of first aromatic molecules, benzene, which it is start to growth polyaromatic hydrocarbons (PAHs), and soot formation.

This paper focuses on the development a reaction kinetic sub-mechanism for the oxidation of allene and propyne which is included in the reaction data of the base of the DLR. The detailed chemistry of allene and propyne is a part of earlier published C2-mechanism with polyaromatic hydrocarbons (PAHs) formation. The sub-mechanism of C3H4 reaction was analyzed on the basis of published studies. Experimental data of ignition delay times and laminar flame speed have been used for validation and improvement of general oxidation reaction paths. In the results, the mechanism was adopted 6 reactions; the rate constants for 7 reactions at the high- (T>1500K) and low-temperatures (T<1500K) ignition were modified. The rate coefficients for reactions C3H4 + H = H2CCCH + H2, C3H4 + H = CH3 + C2H2 and C3H4 + HO2 = H2CCCH + H2O2 have evaluated with statistical treatment. Modified model shows to accurately reproduce the ignition delay times and laminar flame speed of both allene and propyne mixtures at p5=2-10 bar, T5=1100-1840 K and =0.5-2.0 and laminar flame speed at T0=298K, p=1 bar, =0.6-1.8.

Keywords: modeling, mechanism, allene, propyne, oxidation.

Introduction. Polycyclic aromatic hydrocarbons (PAHs) and soot particles are among the priority pollutants, as they have carcinogenic activity and are dangerous for human health. In this connection, the scientific interests to investigation the kinetic mechanism of PAHs and soot formation have not weakened in recent decades [1-3].

The study of detailed chemistry of allene and propyne in hydrocarbon combustion and pyrolysis are very important, because they are precursors of propargyl radical (H2CCCH). It is now well established as experimentally and as theoretically that propargyl radical is important radical, which is a critical intermediate on the formation of the first aromatic ring, PAHs, and soot formation.

This paper aim is to develop a reaction kinetic sub-mechanism for the oxidation of allene and propyne.

C3H4-sub model. The detailed chemistry of allene and propyne is a part of earlier published C2 mechanism [4] which consists of 111 species and 920 reversible elementary reactions. This mechanism has been initially validated against ignition delay data [5, 6] and laminar flame speed [7] of both allene- and propyne-oxygen-argon at pressures p5 = 2–10 bar and for a wide range of stoichiometries  = 0.5–2.0.

The characteristic data of experimental flames and their uncertainties are summarized in Table 1.

(6)

Table 1 – Evaluation of uncertainty intervals for the selected shock tube experimental data

Ref. Driven section

T5, K p5, bar φ Dilution tmeas, µs Uncert., % L, m Int. d, cm

[5] 3.65 +5% 4.5 +5% 1200-1900 +5% 2.0-5.0 +5% 0.5-2.0 yes +5% 45%

[6] 4.0 +5% 7.8 +5% 1000-1650 8.5-10.0 +5% 0.5-1.0 yes +10% 45%

*Initial uncertainty is 20%.

Numerical modelling was performed using the SENKIN (for simulation of ignition delay time) and PREMIX (for simulation of laminar flame speed, sensitivity analysis, rate of production analysis (ROPAD)) code from the CHEMKIN II package [8] and Chemical Workbench [9].

The initially validation against experimental data of ignition delay time and laminar flame speed shows that the mechanism is described the oxidation of allene and propyne (C3H4) the range of tempera- ture interval 1300–1500 K, but does not describe at high- (T > 1500K) and low-temperature (T < 1300K).

First step of the improving the sub-mechanism of C3H4 is sensitivity analysis, which to identify the most important reactions for the development of the oxidation reaction chain. Analysis have been carried

for several temperatures, as at satisfactory described (T5 = 1381 K) and as at unsatisfactory described (T5 = 1893 K, T5 = 1636K, T5 = 1226 K). For every temperature 10 major reactions, which influence to

ignition delay time are shown in Figure 1. This analysis has shown that allene/propyne decomposition reaction H2CCCH + H (+M) = C3H4 (+M) (R403) is important reaction for low- and high-temperatures.

Another the most important reactions for high temperature are H-consuming reactions:

C3H4 + H = H2CCCH + H2 (R395) and С3H4 + H = CH3 + C2H2 (R397); and to low temperatures C3H4 + HO2 = H2CCCH + H2O2 (R396) reaction.

The theoretical and experimental rate constant of reactions (R395)-(R396), which were recommen-

ded in literature from different sources [10-20] have demonstrated that these rates are different at same flame temperatures. For instance, the rate constant of Davis et al. [10] for reaction (R395) is almost

100 times faster than the corresponding rate of Miller et al. [13]. The rate coefficients for reactions

Figure 1 – Logarithmic response sensitivities computed with initial C2 mechanism for ignition delay time

(7)

C3H4 + H = H2CCCH + H2 (R395), C3H4 + H = CH3 + C2H2 (R397), and C3H4 + HO2 = H2CCCH + H2O2

(R396) have evaluated with statistical treatment (Figure 2). This allows the calculation of the uncertainty factor, f(T), (generally not symmetric) traditionally used in chemical kinetics to determine the uncertainty level for the reaction:

0 0

( ) ( )

( ) ; ( ) ,

( ) ( )

upper

u l

low

k T k T

f T f T

k T k T

 

where k0 is the nominal rate coefficient in the Arrhenius expression (cm3, mol, s, K)

exp ⁄ ,

A, n, Ea – Arrhenius parameters; klow and kupper are lower and upper bounds, respectively.

Figure 2 –

The uncertainty boundary evaluations for reaction rate constants for reactions (R395)-(R396) over temperature range of 300–3000 K

To improve simulations of ignition delay times at high-temperature the reactions (R375), (R398)- (R402) were newly adopted.

The unimolecular decomposition reaction (R398) competing to reaction (R403) plays an important role at high temperature as well. The reactions of hydrogen abstraction (R399)-(R402) were added in the model, because they are important reactions for the chain propagation and active radical production. The reaction rate coefficients k398k400 were adopted from Fournet et al. [6]; the rates of reactions k401 and k402 were added from Zhang et al. [21].

The important reaction for the chain brunching (R375) was studied by Klippenstein et al. [2] at T = 600–2000 K and p = 0.001–100 atm. The reaction rate coefficients for (R376) and (R380) were

analyzed and revised. Finally, the rate coefficient values followed from [22] were prescribed to these reactions (Table 2).

(8)

Table 2 – Modifications in the DLR mechanism conducted in the present work

N Reactions A n Ea Ref.

R375 H2CCCH=С3H2+H 3.500E+38 -6.78 54250.0 [2]

R376 H2CCCH+OH=HCO+C2H3 4.000E+12 0.00 0.00 [22]

R377 H2CCCH+H=С3H2+H2 5.000E+11 0.00 0.00 [23]

R380 H2CCCH+O2=CO2+C2H3 3.010E+09 0.00 1443.0 [22]

R385 H2CCCH+OH=C3H2+H2O 2.000E+12 0.00 0.00 [24]

R395 С3H4 +H=H2CCCH+H2 1.000E+12 0.90 5560.0 [Est.]

R396 С3H4+HO2=H2CCCH+H2O2 2.300E+10 0.70 5800.0 [Est.]

R397 С3H4+H=CH3+C2H2 1.000E+14 0.40 3780.0 [Est.]

R398 С3H4=C2H+CH3 4.200E+16 0.00 50000.0 [6]

R399 С3H4+OH=CH2O+C2H3 2.000E+12 0.00 100.0 [6]

R400 С3H4+HO2=C2H4+CO+OH 6.000E+09 0.00 4000.0 [6]

R401 С3H4+OH=HCO+C2H4 1.000E+12 0.00 0.00 [21]

R402 С3H4+O=CH2O+C2H2 9.000E+12 0.00 1870.0 [21]

*Est. – Rate constants were estimated in this work. The rate constants are given at 1 atm ( exp ) in cm3, mol, s, K units.

The addition of these reactions led to the improved agreement with experimental data of ignition delay time at high-temperature. However, the simulation shows that oxidation of allene at lower- temperature should be further investigated. The principal scheme of low-temperature oxidation for allene and propyne will be developed and oxygenated compounds like C3H4O, C3H4O2, C3H2O will be added to the model.

Final simulation with C3H4-sub model is shown that adopted and modified reactions reproduce accurately the ignition delay time for both of allene and propyne mixture flame at high-temperature, Figure 3.

The present kinetic model predicts the shape of the laminar flame speed curve reasonably well, but it over-predicts the experimental data at lean to stoichiometric equivalence ratios ( = 0.7–1.1) (Figure 4).

Based on the model, the consumption of propyne and allene in laminar premixed flame is mainly due to reaction R398.

(9)

Figure 3 – Comparison between computed (dash line – initial-;

solid lines – modified- mechanism) and experimental (symbols) ignition delay times of C3H4/O2/Ar mixtures [5, 6]

(10)

The c high tempe

Conc shock-tube sub-mecha reasonably in pyrolys oxidation o

Ackn financial s (2017–201

Figure 4 – Exp

complete sch erature in C3

Figure 5 – Th

clusion. A de e ignition de anism of C3H y well. The s sis of allene of allene and owledgment support thro 18).

perimental (sym

heme of the m

3H4-sub mod

he major initial s

etailed kineti elay and the H4 predicts th

sensitivity an e and propy d propyne for ts. The autho ugh the Rese

mbol) [7] and co

main reaction el are shown

stages of oxidat

ic model was laminar flam he allene and nalysis show yne at high

r low-temper ors are gratef

earch Grant

omputed (line)

n paths of ox n on the Figu

tion and pyroly

s modified a me speed dat

d propyne ox ws that reacti

temperature rature will be eful to the Ge ts for Doctor

of the laminar f

xidation and ure 5.

ysis of allene an

and verified a ta available xidation and on of С3H4= e. A detailed

e discussed l erman Acade ral Candida

flame speed of

d pyrolysis o

nd propyne in C

against the e in the literat d pyrolysis at

=C2H+CH3 p d kinetic C3

later.

emic Exchan tes and Youn

C3H4/air flame

f allene and

C3H4-sub model

xperimental ture. It was t high-tempe plays the imp

3H4 sub-mec nge Service (D

ng Academic

e

propyne at

data of the shown that erature data portant role chanism of (DAAD) for

c Scientists

(11)

REFERENCES

[1] Giri B.R., Fernandes R.X., Bentz T., Hippler H., Olzmann M. (2011) High-temperature kinetics of propyne and allene:

Decomposition vs. isomerization, Proceedings of the Combustion Institute, 33:267-272. DOI: 10.1016/j.proci.2010.05.072 [2] Klippenstein S.J., Miller J.A., Jasper A.W. (2015) Kinetics of propargyl radical dissociation, J. Phys. Chem. A, 119:7780-7791. DOI: 10.1021/acs.jpca.5b01127

[3] Vourliotakis G., Malliotakis Z., Keramiotis Ch., Skevis G., Founti M.A. (2016) Allene and propyne combustion in premixed flames: a detailed kinetic modeling study, 188: 776-792. DOI: 10.1080/00102202.2016.1138816

[4] Slavinskaya N.A., Chernov V., Starke J.H., Mirzayeva A., Abassi M., Auyelkhankyzy M. (2017) A modeling study of acetylene oxidation and pyrolysis, Combustion and flame, [in press]

[5] Curran H., Simmie J.M., Dagaut P., Voisin D., Cathonnet M. (1996) The ignition and oxidation of allene and propyne:

experiments and kinetic modeling, Twenty-Sixth Symposium (International) on Combustion/The Combustion Institute, 26:613-620. DOI: 10.1016/S0082-0784(96)80267-0

[6] Fournet R., Bauge J.C., Battin-Leclerc F. (1999) Experimental and modeling of oxidation of acetylene, propyne, allene and 1,3-butadiene, Int. J. Chem. Kinet., 31:361-379. DOI: 10.1002/(SICI)1097-4601(1999)31:5<361::AID-KIN6>3.0.CO;2-K

[7] Davis S.G., Law C.K., Wang H. (1998) An experimental and kinetic modeling study of propyne oxidation, Twenty-Se- venth Symposium (International) on Combustion/The Combustion Institute, 27:305-312. DOI: 10.1016/S0082-0784(98)80417-7

[8] Kee R.J., Rupley F.M., Miller (1993) JA. Report NSAND89-8009B, Sandia Laboratories Report [9] http://www.kinetechlab.com/products/chemical-workbench/

[10] Davis S.G., Law C.K., Wang H. (1999) Propene pyrolysis and oxidation kinetics in a flow reactor and laminar flames, Combustion and flame, 199:375-399. DOI: 10.1016/S0010-2180(99)00070-X

[11] Curran H.J., Gaffuri P., Pitz W.J., Westbrook C.K. (2002) A comprehensive modeling study of iso-octane oxidation, Combustion and flame, 129:253-280. DOI: 10.1016/S0010-2180(01)00373-X

[12] Bentz T., Giri B.R., Hippler H., Olzmann M., Striebel F., Syori M. (2007) Reaction of hydrogen atoms with propyne at high temperatures: an experimental and theoretical study, J. Phys. Chem. A, 111:3812-3818. DOI: 10.1021/jp070833c

[13] Miller J.A., Senosiain P., Klippenstein S.J., Georgievskii Z. (2008) Reactions over multiple, interconnected potential wells: unimolecular and bimolecular reactions on a C3H5 potential, J Phys Chem A., 112:9429-38. DOI: 10.1021/jp804510k

[14] Rosado-Reyes C.M., Manion J.A., Tsang W. (2010) Kinetics of the thermal reaction of h atoms with propyne, J. Phys.

Chem. A, 114:5710-5717. DOI: 10.1021/jp9122858

[15] Hidaka Y., Nakamura T., Miyauchi A., Shiraishi T., Kawano H. (1989) Thermal decomposition of propyne and allene in shock waves, Intern. J. Chem. Kinet., 21:643-666. DOI: 10.1002/kin.550210805

[16] Tsang W. (1991) Chemical kinetic data base for combustion chemistry. Part V. Propene, J. Phys. Chem. Ref. Data, 20:221-273. DOI: 10.1063/1.555880

[17] Kern R.D., Xie K. (1991) Shock tube studies of gas phase reactions preceding, Prog. Energy Combust. Sci., 17:191-210.

DOI: 10.1016/0360-1285(91)90010-K

[18] Wang B., Hou H., Gu Y. (2000) Mechanism and rate constant of the reaction of atomic hydrogen with propyne, J.

Chem. Phys., 112:8458-8465. DOI: 10.1063/1.481484

[19] Fernandes R.X., Giri B.R., Hippler H., Kachiani C., Striebel F. (2005) Shock wave study on the thermal unimolecular decomposition of allyl radicals, J. Phys. Chem. A, 109:1063-1070. DOI: 10.1021/jp047482b

[20] Peukert S.L., Labbe N.J., Sivaramakrishnan R., Michael J.V. (2013) Direct measurements of rate constants for the reactions of CH3 radicals with C2H6, C2H4, and C2H2 at high temperatures, J. Phys. Chem. A, 117:10228-10238. DOI:

10.1021/jp4073153

[21] Zhang H.Z., McKinnon J.T. (1995) Elementary reaction modeling of high-temperature benzene combustion, Combustion Science and Technology, 107:261-300. DOI: 10.1080/00102209508907808

[22] Manion J.A., Huie R.E., Levin R.D., Burgess D.R., Orkin V.L., Tsang W., McGivern W.S., Hudgens J.V., Knyazev V.D., Atkinson D.B., Chai E., Tereza A.M., Lin C.Y., Allison T.C., Mallard W.G., Westley F., Herron J.G., Hampson R.F., Frizzell D.H. NIST Chemical Kinetics Database, NIST Standard Reference Database 17, Version 7.0 (Web Version), Release 1.6.8, Data version 2015.12, National Institute of Standards and Technology, Gaithersburg, Maryland, 20899-8320.

http://kinetics.nist.gov/

[23] Leung K.M., Lindstedt R.P. (1995) Detailed kinetic modeling of C1-C3 alkane diffusion flames, Combustion and flame, 102:129-160. DOI: 10.1016/0010-2180(94)00254-P

[24] Miller J.A., Melius C.F. (1992) Kinetics and thermodynamic issues in the formation of aromatic compounds in flames of aliphatic fuels, Combustion and flame 91:21-39. DOI: 10.1016/0010-2180(92)90124-8

(12)

М. Əуелханқызы1,2, М. Аббаси1, Н. А. Славинская1, З. А. Мансуров2

1Жану технологияларының институты, Неміс aэроғарыш орталығы (НAО), Штутгарт, Германия,

2Əл-Фараби атындағы Қазақ ұлттық университеті, Алматы, Қазақстан

АЛЛЕН ЖƏНЕ ПРОПИННІҢ ТОТЫҒУ РЕАКЦИЯСЫНЫҢ МЕХАНИЗМІ

Аннотация. Көмірсутектер жанғанда түзілетін аллен жане пропиннің химиясын толық зерттеу өте маңызды, себебі олар пропаргил радикалының (H2CCCH) прекурсорлары болып табылады. Пропаргил ра- дикал, полициклді ароматты көмірсутектердің (ПЦАК) жəне күйе бөлшектерінің түзілуінде бастапқы рөл атқаратын бірінші ароматты молекула – бензолдың түзілуінде өте маңызды.

Осы мақалада НАО-ның реакциялық базасы негізінде аллен мен пропиннің тотығуының суб-меха- низмінің кинетикалық реакциясын жасауға көніл бөлінді. Аллен мен пропиннің химиясы бұрын жарияланған ПЦАК бар C2 механизмнің бір бөлігі болып табылады. C3H4 суб-механизміндегі реакцияларға жарияланған зерттеу жұмыстар негізінде талдау жасалды. Тұтану уақыты жəне ламинарлы жалын жылдамдығының экс- перименттік деректері реакция механизмін тексеру жəне оңтайландыру үшін пайдаланылды. Нəтижесінде, механизмге 6 реакция қосылды; төменгі (T < 1500K) жəне жоғары температурада (Т > 1500K) тұтану уақытын сипаттау үшін 7 реакцияның жылдамдылық константасы жанартылды. C3H4 + H = H2CCCH + H2, C3H4 + H = CH3 + C2H2 жəне C3H4 + HO2 = H2CCCH + H2O2 реакцияларының жылдамдылық коэффициент- тері деректерді статистикалық өңдеу арқылы бағаланды. Өңделген модел аллен жəне пропин қоспасы үшін p5 = 2–10 бар, Т5 = 1100–1840 К,  = 0,5–2,0 кезінде тұтану уақытың жəне T0 = 298K, p = 1 bar,  = 0,6–1,8 кезіндегі ламинарлы жалынның жылдамдылығын толық сипаттайды.

Түйін сөздер: моделдеу, механизм, аллена, пропен, тотығу.

М. Ауелханкызы1,2, М. Аббаси1, Н.А. Славинская1, З.А. Мансуров2

1Институт Технологий горения (НАЦ), Штутгарт, Германия,

2Казахский национальный университет им. аль-Фараби, Алматы, Казахстан

МЕХАНИЗМ РЕАКЦИЙ ОКИСЛЕНИЯ АЛЛЕНА И ПРОПИНА

Аннотация. Изучение детальной химии аллена и пропина при горении углеводородов очень актуально, поскольку они являются прекурсорами пропаргильного радикала (H2CCCH). Пропаргильный радикал играет основную роль в образовании первой ароматической молекулы, бензола, который дает старт росту поли- циклических ароматических углеводородов (ПЦАУ) и образованию сажи.

В настоящей работе основное внимание уделяется разработке реакционного кинетического суб-меха- низма для окисления аллена и пропина, входящего в реакционную данных базу НАЦ (DLR). Детальная химия аллена и пропина является частью ранее опубликованного механизма С2 с образованием ПЦАУ. Суб- механизм реакции C3H4 был проанализирован на базе опубликованных исследований. Экспериментальные данные по временам задержек воспламенения и скоростям ламинарных пламен были использованы для тестирования и оптимизации реакционного механизма. В результате механизм был дополнен 6 реакциями;

константы скоростей 7 реакций для низкотемпературного (T < 1500K) и высокотемпературного (T > 1500K) воспламенения были модифицированы. При этом коэффициенты скоростей реакций C3H4 + H = H2CCCH + H2, C3H4 + H = CH3 + C2H2 и C3H4 + HO2 = H2CCCH + H2O2были оценены путем статистической обработки данных. Модифицированная модель удовлетворительно воспроизводит времена задержек воспламенения для смесей аллена и пропина при p5 = 2-10 бар, Т5 = 1100–1840 К,  = 0,5–2,0 и скорости ламинарных пламен для аллена при T0 = 298K, p = 1 bar,  = 0,6–1,8.

Ключевые слова: моделирование, механизм, аллен, пропин, окисления.

(13)

BULLETIN OF NATIONAL ACADEMY OF SCIENCES OF THE REPUBLIC OF KAZAKHSTAN

ISSN 1991-3494

Volume 6, Number 370 (2017), 13 – 21

UDK 622.673.1

Z. T.Akashev1, A. D. Mekhtiyev1, F. N. Bulatbayev1, Y. G. Neshina2, A. D. Alkina2, V. V. Yugay1

1Karaganda state technical University, Karaganda, Kazakhstan,

2Tomsk Polytechnic University, Tomsk, Russia,

E-mail: barton.kz@mail.ru, felix4965@mail.ru, 1_neg@mail.ru, alika_1308@mail.ru, slawa_v@mail.ru

OPTIMIZATION OF PULLING PART

OF THE MAGISTRAL CONVEYER’S STRUCTURAL SCHEMES

Abstract. In this article,the work was carried out to find the optimal conveyor schemes which are necessary to successfully solve the pipelining problem when transporting rock cargo to the deep quarry. Analysis of ways to in- crease the conveyor length by varying independent variables has shown that the construction of the pipeline scheme is characterized only by those ways of increasing the length of the conveyors that determine the mechanical structure of their traction body and, consequently, the behavior of the latter under static and dynamic loads. The optimal algorithm was established for constructing the structural diagrams of the traction organ of the main conveyors.

Theoretical grounds are given for the creation of new means of continuous transport, which ensure the continuous conveyance of technological chains for the extraction of minerals, the issuance and laying of overburden in the dump. Analysis and synthesis of structural schemes of "uninterrupted" conveyors was held. Synthesis of the struc- tural schemes of these conveyors is carried out by a mathematical operation – the operation of adding the strength indicators of the traction organs used. Two classes of pipelines, fundamentally different from each other, were con- sidered: a BC with parallel autonomous circuits and a BMC. The introduction of vertical and steeply sloped con- veyors as a trench transport is a promising direction in the field of conveyorization of the mining industry and a reduction in the cost of mining.

Key words: magistral conveyer, optimization of structural schemes, conveyers’ classification, autonomic pulling part, multigear conveyer.

Preconditions for the exploration and creation of fundamentally new, promising structures of traction bodies of conveyors. The technological designation of any conveyor, including conveyors with traction body (TB), – this is the movement of the cargo over a distance, so the main technological pa- rameter of the conveyors is their length. At the same time, the maximum permissible length of the conveyor, limited by the strength of the TB, under the same operating conditions and the same TB depends on the perfection of the method of transporting the goods accepted on the given conveyor, i.e., on the value of the drag resistance coefficient

. For example, a downhole belt conveyor with a lower wor- king line moving directly along the soil of the formation and drifting with a working branch moving along rollers of stationary roller bearings with belts of the same size, or scraper and belt-chain conveyors with traction chains of the same size for the same values of the linear load and the installation angle allow for different lengths with the same strength of the TB. n this regard, the maximum permissible length of the conveyor is still an indicator of the quality (perfection) of the conveyor's structural scheme, determined by the principle that "the larger the maximum permissible conveyor length, other things being equal, the better its scheme corresponds to the continuity and continuity of the cargo flow, and consequently, a reduction in the number of mechanisms in the transport line, i.e., the continuity of the transport scheme.

Obviously, the introduction of a continuous transport scheme for moving the rock mass over long distances along complex curvilinear routes is one of the promising areas of work to improve the efficiency of production at mining enterprises.

To solve the set tasks, it is necessary to create new means of continuous transport, which ensure the continuous conveyance of technological chains for the extraction of minerals, the issuance and laying of

(14)

overburden in the dump. The high economic efficiency of new means of transport should be determined by the reduction in the volume of mining and capital works when digging inclined transport workings (tranches), reducing the number of transport vehicles as a result of increasing their unit capacity, combining the delivery of basic and auxiliary cargo.

In this regard, for the successful solution of the problem of conveyorization of transportation of rocky cargoes at quarries, it is expedient to search for and develop the simplest schemes of conveyors, and first of all single-drive ones, which for each specific case of given operating conditions (for given values of productivity, transportation distance, curvilinearness of the route plan and profile, etc.) would be the most rational [1–18].

Obviously, such a problem can be solved if regularities in constructing the TB structure of the pipeline are established [5…18]. Then, using these patterns and developing them in the desired direction, it will be possible to create pipelines with pre-predicted properties.

To determine the rational schemes of special conveyors that transport rock and substantiate their basic parameters, all general and special purpose conveyors should be classified according to a single system. And the classification should be carried out according to the most common feature that reveals the main internal connections (mechanical structure) of the TB pipeline structural diagram [19]. This will allow us to find promising ways for the development of internal links, hence, the schemes of conveyors.

At the same time, such connections can be found that will limit the sliding and rolling of cargo along TB, improve the cleaning conditions of the bearing surface from the adhered material, ensure maximum use of traction elements in strength, etc.

Having a technological task – increasing the range of uninterrupted transportation of rock cargo by conveyors, the main attribute of classification can be determined from the analysis of factors affecting the main technological parameter of conveyors – length.

The length of a straight conveyor, for example, is defined by

cos sin

g, Lq

n S P

C сб

РАЗ  

(1) where PРАЗ – breaking force of the traction body, Н; n – coefficient of safety factor of TB; Sсб – force at the point of escape from the drive, Н; qC– total linear mass of moving parts of conveyor and cargo, kg/m;

– drag coefficient;  – angle of conveyor installation, grad. ; g – acceleration of gravity, m/s2. Решение равенства (1) относительно длины конвейера L дает

cos sin

м. g q

n S P L

C

сб РАЗ

 

Therefore, under certain operating conditions (given capacity and angle of inclination), the maximum permissible length of the conveyor from (1) is a function of three independent variables (rupture strength, safety factor, and drag coefficient). The force on the length of the conveyor L is not affected, since it is defined as the minimum permissible because of the reliable interaction of the TB with the conveyor drive.

We assume that gc=const (the weight of the load-bearing body of the TO is distributed evenly)

Analysis of ways to increase the length of the conveyor by the variation of these independent variables shows that the construction of the pipeline scheme is characterized only by those ways of increasing the length of the conveyors that determine the mechanical structure of their TB and, con- sequently, the behavior of the latter under static and dynamic loads. In this regard, in order to determine the optimal algorithm for constructing pipelining schemes, it is necessary to study the static and dynamic properties of TB, and then, having formulated the most common property of them as a mathematical problem, solve it for the optimum and establish the main feature of the classification of conveyors.

The optimal algorithm for constructing pipeline diagrams. Studies of domestic and foreign scientists [5] show that the static and dynamic properties of traction organs of all types of trunk pipelines are almost identical and allow us to draw the following conclusions:

– the magnitude of deformation of chain and cable TB, as well as conveyor belts on a fabric basis, in the absence of transverse loading on them, is directly proportional to the value of the applied tension;

(15)

– in the presence of transverse loads in chain TO and conveyor belts on a fabric basis, the dependence of the relative elongation on the tension value has a parabolic shape, and the conditional stiffness can be represented in a differential form;

– from the analysis of the characteristics of conveyor belts and chain traction organs and their comparison with the characteristics of cable TB, it can be assumed that the dependence of the relative elongation of the rope TB on the magnitude of its tension in the presence of a transverse load will also be determined by a curve of the second

Thus, TB long (main) conveyors are an elastic element, which under the action of the difference in forces at the ends is deformed. Absolute extension of TB within the length of the section under consi- deration:

L L dx

0

 ,

where

– relative extension (TB); х – distance from the drive to the considered section of the TB.

In most cases, TB of long conveyors, when in contact with or at the same time as a carrier, perceive the transverse load distributed along the length of the conveyor and sag between the running or fixed rollers. Such TBs do not obey Hooke's law, and their conditional rigidity as a coefficient of proportionality between the acting force S and the relative elongation (along the longitudinal axis) of TB is defined as E(S) = dS/d

.

Using the property of the invariance of differentials, these conditions can be written as a system of differential equations::

 





 

,

;

;

adt dx

dt S d dt E

dS dt a

L d

(2)

where a= const - elastic wave propagation velocity, m/s; t - current time, s.

We solve the system of equations (2) to the optimum, using the Pontryagin "maximum principle".

Having assumed the rate of change of deformation for the control action and introducing the phase coordinates x1 L;x2

;x3S phase space X, we obtain a system of differential equations in phase coordinates:





;

;

;

3 2 1 2

dt EU dx

dt U dx dt ax dx

Considering that TB can not be subjected to unlimited deformation, we introduce an effort constraint:

 

S

S  . (3) Then the problem of optimal control can be mathematically formulated as follows: it is required to find the optimal control algorithm according to which the phase point will move from the position

3 2 1,x ,x

x in the x11,x21,x31 for the minimum time.

For the case under consideration the Hamiltonian function:

, )

3 (

2 2

1x a U E S U

H

where

1,

2,

3– auxiliary variables, for the determination of which there is a system of equations:
(16)













.

;

;

3 3

2 2

1 1

dx H dt

d

dx H dt

d

dx H dt

d

Differentiating, we obtain the following system of equations:





, 0

;

; 0

3 1 2 1

dt d

dt a d

dt d

 

which is satisfied by functions of the form





 , )

(

; )

(

; ) (

3 3

1 2 2

1 1

C t

at C C t

C t

where C1,C2,C3– constants of integration.

The function H will be maximal with respect to U provided 0

3 (S)

1 

E

dU

dH   . (4) Then, substituting the values

2(t) and

3(t)the equation (4), we find C3E(S)C2C1at, whence

3 1

) 2

( C

at C S C

E

 . (5) It can be concluded from equation (5) that the longitudinal stability E (S) of a linearly decreasing law on the length of the working body.

Having adopted the notation

3 1 2 3 2

1 ;

C C C

C

we have:

x S

E( )

1

2 . (6) Substituting the value of E (S) in condition (2), we determine from (6) that

. )

(

2

1 x

dt dS t

U    (7) This is the optimal law of change in the rate of deformation in (TB) pipelines.

However, as follows from condition (2), in order to obtain the optimal control algorithm in each specific case it is necessary to know the law of the distribution of forces in the TB along its length. For example, for a straight section of the conveyor, when the stiffness and mass of the load-bearing organ are evenly distributed along the length, we can take the linear force distribution law:

     

maxp

Smaxp Sminp

,

L S x

S   

(17)

where

 

Sminp и

 

Smaxp – расчетные значения соответственно минимально и максимально допус- тимых статических усилий на TB, N. Then

   

) ) (

(

2 1

min max

х t

S t S

U

пр

p p

 

where tпр = L/a – the time of passage of the elastic wave along the section, s.

Maximum permissible static force on TB

 

max

 

,

n S P

Sp   раз where Pраз – breaking force of TB, N; n – safety factor.

For the case under consideration, when cargo is transported over long distances along complex, cur- ved lines, the total resistance to movement of the entire conveyor line

 

,

0 S

W  (8) therefore, to overcome it, the required strength of the TO is created by summing up their permissible static forces, which is achieved by some complication of the structural scheme of the conveyors:

  

j

m

i S W mjSсб

1 0 , (9) where mj – the total number of terms (constituent units) when tying the required static strength of the TB [19].

The foregoing allows us to conclude that the desired conveyors have a complex constructive scheme, and the necessary static strength of their TB is created by synthesis (summation) of the permissible static forces of the used TB [20–22].

Synthesis methods and terminology of an uninterrupted conveyor. Suppose that the transpor- tation of goods is carried out under specified operating conditions (productivity, transportation range, plan and profile of the route, etc.).

Indeed, condition (9) can be realized in the following ways: using in-line m1 single-drive conveyors with single TB; one conveyor with autonomous parallel TB; One conveyor with a single TB and with m3 drives sequentially arranged along the contour of the conveyor.

Here, single TBs mean not only those that consist of a single chain, one rope, a single synthetic or steel strip, that is, one element, but also consisting of a set of parallel elements having a direct mechanical connection (multi-packing and rubber-rubber tapes, multi-chain and multichannel TB with a mechanical link between the elements through common end sprockets and drums), but serviced by a single drive.

Stand-alone TBs have separate drives. Constituent units:

m1 – conveyors, m2 – ТB, m3 – actuators.

In connection with this, equality (9), which is the general formula of the desired conveyor, can be represented in the following form:

    



 

 

 

 

 



 

 

j j j

j m

i H сб m

i

сб m

i

сб m

i

m S S W

m S W

m

S W

K

1 3 п

пер 0

1 2

0

1 1

0

1 K

K 1

where Kп – traction organ overload factor; КH – coefficient of uneven load distribution between secon- dary elements.

Having transformed this equation, we have

п 3 2

1 K

m m

m  KH  whence

KH 2 п

3 K m

m  .

Obviously, a single-drive single-unit conveyor (TB) is a special case (where m2= 1) conveyor with autonomous parallel (TB), so the desired conveyors, according to the formulation of the problem

(18)
(19)

conditionally called "uninterrupted" (UI), synthesized as UI with autonomous parallel (TO) (1st class) and UI multi-drive (UIM, 2nd class).

Indeed, for a UI with autonomous parallel TBs, the total permissible static forces are determined, according to condition (9), as

   

,

n

2 1

1 2

1

m

i m раз i

m P S

S (10) Whereas for UIM they should be reduced in connection with the redistribution of the total load of the conveyor between its drives, i.e.

   

,

nK

3 1

1 п

3

1

 

m

i m раз i

m P S

S (11) TB overload factor with partial or partial loading of the conveyor

S 1, W K S

сб гр

max

п

 

where Smax – The maximum force in TB, taking into account the transfer of load of the conveyor between its drives; Wгр – resistance to movement of a section with a nominal load; Sсб – the tension at the run-off point from the drive at rated load.

Coefficient Кп is determined for the most unfavorable case of loading the conveyor and depends on the number of its drives [20–22]. Consequently, under equal operating conditions, the use of the UI is associated with the need for equipping it with a large number of intermediate drives, rather than UIM with parallel autonomous circuits – the number of autonomous circuits, i.e.,m3> m2, which is a definite advantage of the TB structural diagram of the latter.

Analysis and synthesis of UI structural diagrams (Figure) allows us to draw the following con- clusions:

– synthesis of structural schemes UI is carried out by mathematical operation - operation of addition of strength indicators of traction organs used;

– there are two classes of UI, which are fundamentally different from each other: UI with parallel autonomous circuits and UIM;

– the difference in the distribution of forces in the traction organs of the main classes of conveyors is that for UI with parallel autonomous circuits the overload factor Кп = 1, and for UIM Kп > 1;

– regularity of the distribution of forces in TB UI at the first level of classification - a rough gradation of the uneven distribution of forces in parallel branches: for a BC with a direct connection between the elements of a single traction body (I group) Kн ≤ 1, and for UI with an indirect link between parallel traction bodies (II group) KH = 1; at the second level of classification - the gradual gradation of the uneven distribution of effort: for UI of the I group – by the coefficient of unevenness KH, and for UI of the П group – by the coefficient of distribution of the total load of the conveyor

; at the third level of classification, an inverse proportion of the effort: for conveyors of group I – of the number of elements of a single TB z, and for conveyors of group II – from the number of autonomous individual TBs m2, than the cycles are closed and return to the starting position: for group I – up to the static strength of the elements of a single TB, and for II – up to the static strength of autonomous unitary maintenance;

– the structural diagrams of UI represent a closed circle of circulation of forces: for pipelines of group I there is a small circle, and for II, a large circle, the latter including all the components of a small circle

REFERENCES

[1] Beletskii D.M., Kuznetsov D.G. Plastinchatye konveier. M.: Nauka, 1991. 184 P.

[2] Saginov A.S., Daniiarov A.N., Akashev Z.T. Osnovy proektirovaniia i rascheta kar'ernykh plastinchatykh konveierov.

Alma-Ata: Nauka, 1984. 328 P.

[3] Akashev Z.T. Metodologiia sovershenstvovaniia i vybora struktury tekhnologicheskikh protsessov gornodoby- vaiushchikh predpriiatii // Zhurnal «Tiazheloe mashinostroenie». M., 2005. N 12. P. 17-19.

(20)

[4] Akashev Z.T., Malybaev S.K., Akashev A.Z. Poisk i realizatsiia naukoemkikh produktsii v promyshlennosti i trans- porte. Karagandy: KarGTU, 2006. 197 p.

[5] Kartavyi A.N. Krutonaklonnye lentochnye konveiery dlia gornoi promyshlennosti // Tornoe oborudovanie i elektrome- khanika. 2006. N 10. P. 22-26.

[6] Kartavyi A.N. Problemy primeneniia razlichnykh tipov krutonaklonnykh lentochnykh konveierov // Tiazheloe mashino- stroenie. 2007. N 3. P. 33-34.

[7] Shemko E.E. Problemy krutonaklonnykh lentochnykh konveierov s prizhimnoi lentoi // Gornye mashiny: Sb. nauch- nykh trudov. Otdel'nyi vypusk GIAB # 8. M.: Mir gornoi knigi, 2008. 384 p.

[8] Kartavyi A.N. Perspektivy primeneniia krugonaklonnykh konveierov s prizhimnoi lentoi pri TsPT // Gornyi zhurnal.

2003. N 6. P. 52-56.

[9] Grainakher I., Barnet K., Dobert M. Proektirovanie i montazh vertikal'nogo konveiera na shakhte «Uaig kaunti» //

Glkzhauf. 2004. N 2(3). P. 16-23.

[10] Galkin V.I., Dmitriev V.G. Trubchatye konveiery dlia gornoi promyshlennosti // Gornoe oborudovanie i elektromekha- nika. 2009. N 1. P. 39-46.

[11] Averchenkov V.I., Davydov S.V. i dr. Konveiery s podvesnoi lentoi / Pod obsh. red. V. I. Averchenkova, V. N. Ivchen- ko. M.: Mashinostroenie, 2004. 256 p.

[12] Balabaev O.T. Spetskurs konveiernogo transporta: Uchebnik. Karaganda: Izd-vo KarGTU, 2014. 160 p.

[13] Nauchno-issledovatel'skii otchet konstruktorsko-tekhnologicheskoi raboty «Povyshenie effektivnosti raboty magistral'nogo lentochnogo konveiera na rudnike «Nurkazgan» za schet opredeleniia ego naibolee ratsional'nykh konstruktivnykh i ekspluatatsionnykh parametrov» (dogovor # 09.17.01 ot 10.06.2009 g. mezhdu KarGTU i PO «Karagandatsvetmet», filial TOO

«Korporatsiia Kazakhmys»). Karaganda, 2009. 73 p.

[14] Spivakovskii A.O., D'iachkov V.K. Transportiruiushchie mashiny. M.: Mashinostroenie, 2006. 487 p.

[15] Galkin V.I., Sheshko E.E. Transportnye mashiny. M.: Izdatel'stvo «Gornaia kniga», Izdatel'stvo MGTU, 2010. 588 p.

ISBN: 978-5-7418-0645-6

[16] Mulukhov K.K., Beslekoeva Z.N. // Gornyy informatsionno-analiticheskiy byulleten. 2012. N 5. P. 253-258.

[17] Mulukhov K.K., Beslekoeva Z.N. // Gornyyinformatsionno-analiticheskiy byulleten. 2009. N 3. P. 249-257.

[18] Galkin V.I. Sovremennaya teoriya lentochnykh konveyerov gornykh predpriyatiy (Modern theory of mine belt con- veyors). M.: MGGU, 2005. P. 342-246.

[19] Akashev Z.T., Mekhtiev A.D., Bulatbaev F.N. Modul'nyi printsip organizatsii gornogo mashinostroeniia. Monografiia.

Karaganda: Izd-vo KarGTU, 2013. 282 p.

[20] Akashev Z.T. Zagruzochnoe ustroistvo krutonaklonnogo plastinchatogo konveiera. Innovatsionnyi patent. Avtorskoe svidetel'stvo Respubliki Kazakhstan, opubl. 11.06.12, # 78049.

[21] Akashev Z.T., Mekhtiev A.D. Innovatsionnyi patent Respubliki Kazakhstan, opubl. 11.06.12, # 26899. Sposob natiazheniia tiagovogo organa mnogoprivodnogo konveiera.

[22] Akashev Z.T., Mekhtiev A.D. Gruzo-podderzhivaiushchee ustroistvo krutonaklonnogo konveiernogo pod"emnika.

Innovatsionnyi patent Respubliki Kazakhstan, opubl. 15.11.11, # 24856.

З. Т. Акашев1, А. Д. Мехтиев1, Ф. Н. Булатбаев1, Е. Г. Нешина2, А. Д. Ал

Сурет

Figure 1 – Logarithmic response sensitivities computed with initial C 2  mechanism for ignition delay time
Table 1 – Evaluation of uncertainty intervals for the selected shock tube experimental data
Table 2 – Modifications in the DLR mechanism conducted in the present work
Figure 3 – Comparison between computed (dash line – initial-;
+7

Ақпарат көздері

СӘЙКЕС КЕЛЕТІН ҚҰЖАТТАР

Постановление Правительства Республики Казахстан от 29 октября 2010 года № 1135 «Об утверждении Программы по развитию казахстанского содержания в Республике

Среди них: Стратегический план до 2010 года, Стратегия индустриально- инновационного развития на 2003-2015 годы, Программа по формированию

Министра охраны окружающей среды Республики Казахстан от 2 августа 2007 года N 244-п «Об утверждении перечня отходов для размещения

«О здоровье народа и системе здравоохранения» (пункт 3, статья 58), постановлением Правительства Республики Казахстан от 22 декабря 2011 года № 1577 были утверж- дены

9 июня 2014 года Постановлением Правительства Республики Казахстан была утверждена «Про- грамма модернизации системы управления твердыми бытовыми отходами

Разработанная Концепция развития туристской отрасли Республики Казахстан до 2020 года ставит своей целью обеспечить устойчивое развитие туристской

Начиная с 2013 года, когда в Казахстане была принята «Концепция инновационного развития Республики Казахстан до 2020 года» и рассмотрено понятие инновационная деятельность, что

Постановлением Правительства Республики Казахстан от 29 июня 2001 года № 892 «О переименовании отдельных государственных высших учебных заведений», университет был переименован в