ISSN 2224-5308 (Print) ҚАЗАҚСТАН РЕСПУБЛИКАСЫ
ҰЛТТЫҚ ҒЫЛЫМ АКАДЕМИЯСЫНЫҢ
Өсімдіктердің биологиясы жəне биотехнологиясы институтының
Х А Б А Р Л А Р Ы
ИЗВЕСТИЯ
НАЦИОНАЛЬНОЙ АКАДЕМИИ НАУК РЕСПУБЛИКИ КАЗАХСТАН
Института биологии и биотехнологии растений
N E W S
OF THE NATIONAL ACADEMY OF SCIENCES OF THE REPUBLIC OF KAZAKHSTAN of the Institute of Plant Biology and Biotechnology
БИОЛОГИЯ ЖƏНЕ МЕДИЦИНА СЕРИЯСЫ
СЕРИЯ
БИОЛОГИЧЕСКАЯ И МЕДИЦИНСКАЯ
SERIES
OF BIOLOGICAL AND MEDICAL
4 (322)
ШІЛДЕ – ТАМЫЗ 2017 ж.
ИЮЛЬ – АВГУСТ 2017 г.
JULY – AUGUST 2017
1963 ЖЫЛДЫҢ ҚАҢТАР АЙЫНАН ШЫҒА БАСТАҒАН ИЗДАЕТСЯ С ЯНВАРЯ 1963 ГОДА
PUBLISHED SINCE JANUARY 1963 ЖЫЛЫНА 6 РЕТ ШЫҒАДЫ
ВЫХОДИТ 6 РАЗ В ГОД PUBLISHED 6 TIMES A YEAR
АЛМАТЫ, ҚР ҰҒА АЛМАТЫ, НАН РК
ALMATY, NAS RK
Известия Национальной академии наук Республики Казахстан Б а с
р е д а к т о р
ҚР ҰҒА академигі, м. ғ. д., проф. Ж. А. Арзықұлов
Абжанов Архат проф. (Бостон, АҚШ), Абелев С.К., проф. (Мəскеу, Ресей),
Айтқожина Н.А., проф., академик (Қазақстан) Акшулаков С.К., проф., академик (Қазақстан) Алшынбаев М.К., проф., академик (Қазақстан) Бəтпенов Н.Д., проф., корр.-мүшесі(Қазақстан) Березин В.Э., проф., корр.-мүшесі (Қазақстан) Берсімбаев Р.И., проф., академик (Қазақстан) Беркінбаев С.Ф., проф., (Қазақстан)
Бисенбаев А.К., проф., академик (Қазақстан) Бишимбаева Н.Қ., проф., академик (Қазақстан) Ботабекова Т.К., проф., корр.-мүшесі (Қазақстан) Bosch Ernesto prof. (Spain)
Жансүгірова Л.Б., б.ғ.к., проф. (Қазақстан) Ellenbogen Adrian prof. (Tel-Aviv, Israel),
Жамбакин Қ.Ж., проф., академик (Қазақстан), бас ред. орынбасары Заядан Б.К., проф., корр.-мүшесі (Қазақстан)
Ishchenko Alexander prof. (Villejuif, France) Исаева Р.Б., проф., (Қазақстан)
Қайдарова Д.Р., проф., академик (Қазақстан) Кохметова А.М., проф., корр.-мүшесі (Қазақстан) Күзденбаева Р.С., проф., академик (Қазақстан) Лось Д.А., prof. (Мəскеу, Ресей)
Lunenfeld Bruno prof. (Израиль)
Макашев Е.К., проф., корр.-мүшесі (Қазақстан) Муминов Т.А., проф., академик (Қазақстан) Огарь Н.П., проф., корр.-мүшесі (Қазақстан) Омаров Р.Т., б.ғ.к., проф., (Қазақстан) Продеус А.П. проф. (Ресей)
Purton Saul prof. (London, UK)
Рахыпбеков Т.К., проф., корр.-мүшесі (Қазақстан) Сапарбаев Мұрат проф. (Париж, Франция) Сарбасов Дос проф. (Хьюстон, АҚШ)
Тұрысбеков Е.К., б.ғ.к., асс.проф. (Қазақстан) Шарманов А.Т., проф. (АҚШ)
«ҚР ҰҒА Хабарлары. Биология жəне медициналық сериясы».
ISSN 2518-1629 (Online), ISSN 2224-5308 (Print)
Меншіктенуші: «Қазақстан Республикасының Ұлттық ғылым академиясы» РҚБ (Алматы қ.)
Қазақстан республикасының Мəдениет пен ақпарат министрлігінің Ақпарат жəне мұрағат комитетінде 01.06.2006 ж. берілген №5546-Ж мерзімдік басылым тіркеуіне қойылу туралы куəлік
Мерзімділігі: жылына 6 рет.
Тиражы: 300 дана.
Редакцияның мекенжайы: 050010, Алматы қ., Шевченко көш., 28, 219 бөл., 220, тел.: 272-13-19, 272-13-18, www:nauka-nanrk.kz / biological-medical.kz
© Қазақстан Республикасының Ұлттық ғылым академиясы, 2017 Типографияның мекенжайы: «Аруна» ЖК, Алматы қ., Муратбаева көш., 75.
Г л а в н ы й
р е д а к т о р
академик НАН РК, д.м.н., проф. Ж. А. Арзыкулов Абжанов Архат проф. (Бостон, США),
Абелев С.К. проф. (Москва, Россия),
Айтхожина Н.А. проф., академик (Казахстан) Акшулаков С.К. проф., академик (Казахстан) Алчинбаев М.К. проф., академик (Казахстан) Батпенов Н.Д. проф. член-корр.НАН РК (Казахстан) Березин В.Э., проф., чл.-корр. (Казахстан)
Берсимбаев Р.И., проф., академик (Казахстан) Беркинбаев С.Ф. проф. (Казахстан)
Бисенбаев А.К. проф., академик (Казахстан) Бишимбаева Н.К. проф., академик (Казахстан) Ботабекова Т.К. проф., чл.-корр. (Казахстан) Bosch Ernesto prof. (Spain)
Джансугурова Л. Б. к.б.н., проф. (Казахстан) Ellenbogen Adrian prof. (Tel-Aviv, Israel),
ЖамбакинК.Ж. проф., академик (Казахстан), зам. гл. ред.
Заядан Б.К. проф., чл.-корр. (Казахстан) Ishchenko Alexander, prof. (Villejuif, France) Исаева Р.Б. проф. (Казахстан)
Кайдарова Д.Р. проф., академик (Казахстан) Кохметова А.М. проф., чл.-корр. (Казахстан) Кузденбаева Р.С. проф., академик (Казахстан) Лось Д.А. prof. (Москва, Россия)
Lunenfeld Bruno prof. (Израиль)
Макашев Е.К. проф., чл.-корр. (Казахстан) Муминов Т.А. проф., академик (Казахстан) Огарь Н.П. проф., чл.-корр. (Казахстан) Омаров Р.Т.к.б.н., проф. (Казахстан) Продеус А.П. проф. (Россия)
Purton Saul prof. (London, UK)
Рахыпбеков Т.К. проф., чл.-корр. (Казахстан) Сапарбаев Мурат проф. (Париж, Франция) Сарбасов Дос проф. (Хьюстон, США)
Турысбеков Е. К., к.б.н., асс.проф. (Казахстан) Шарманов А.Т. проф. (США)
«Известия НАН РК. Серия биологическая и медицинская».
ISSN 2518-1629 (Online), ISSN 2224-5308 (Print)
Собственник: РОО «Национальная академия наук Республики Казахстан» (г. Алматы)
Свидетельство о постановке на учет периодического печатного издания в Комитете информации и архивов Министерства культуры и информации Республики Казахстан №5546-Ж, выданное 01.06.2006 г.
Периодичность: 6 раз в год Тираж: 300 экземпляров
Адрес редакции: 050010, г. Алматы, ул. Шевченко, 28, ком. 219, 220, тел. 272-13-19, 272-13-18, www:nauka-nanrk.kz / biological-medical.kz
© Национальная академия наук Республики Казахстан, 2017 Адрес типографии: ИП «Аруна», г. Алматы, ул. Муратбаева, 75
Известия Национальной академии наук Республики Казахстан E d i t o r
i n
c h i e f
Zh.A. Arzykulov, academician of NAS RK, Dr. med., prof.
Abzhanov Arkhat, prof. (Boston, USA), Abelev S.K., prof. (Moscow, Russia),
Aitkhozhina N.А., prof., academician (Kazakhstan) Akshulakov S.K., prof., academician (Kazakhstan) Alchinbayev М.K., prof., academician (Kazakhstan) Batpenov N.D., prof., corr. member (Kazakhstan) Berezin V.Ye., prof., corr. member. (Kazakhstan) Bersimbayev R.I., prof., academician (Kazakhstan) Berkinbaev S.F., prof. (Kazakhstan)
Bisenbayev А.K., prof., academician (Kazakhstan) Bishimbayeva N.K., prof., academician (Kazakhstan) Botabekova Т.K., prof., corr. member. (Kazakhstan) Bosch Ernesto, prof. (Spain)
Dzhansugurova L.B., Cand. biol., prof. (Kazakhstan) Ellenbogen Adrian, prof. (Tel-Aviv, Israel),
Zhambakin K.Zh., prof., academician (Kazakhstan), deputy editor-in-chief Ishchenko Alexander, prof. (Villejuif, France)
Isayeva R.B., prof. (Kazakhstan)
Kaydarova D.R., prof., academician (Kazakhstan) Kokhmetova A., prof., corr. member (Kazakhstan) Kuzdenbayeva R.S., prof., academician (Kazakhstan) Los D.А., prof. (Moscow, Russia)
Lunenfeld Bruno, prof. (Israel)
Makashev E.K., prof., corr. member (Kazakhstan) Muminov Т.А., prof., academician (Kazakhstan) Ogar N.P., prof., corr. member (Kazakhstan) Omarov R.T., Cand. biol., prof. (Kazakhstan) Prodeus A.P., prof. (Russia)
Purton Saul, prof. (London, UK)
Rakhypbekov Т.K., prof., corr. member. (Kazakhstan) Saparbayev Мurat, prof. (Paris, France)
Sarbassov Dos, prof. (Houston, USA)
Turysbekov E.K., cand. biol., assoc. prof. (Kazakhstan) Sharmanov A.T., prof. (USA)
News of the National Academy of Sciences of the Republic of Kazakhstan. Series of biology and medicine.
ISSN 2518-1629 (Online), ISSN 2224-5308 (Print)
Owner: RPA "National Academy of Sciences of the Republic of Kazakhstan" (Almaty)
The certificate of registration of a periodic printed publication in the Committee of information and archives of the Ministry of culture and information of the Republic of Kazakhstan N 5546-Ж, issued 01.06.2006
Periodicity: 6 times a year Circulation: 300 copies
Editorial address: 28, Shevchenko str., of. 219, 220, Almaty, 050010, tel. 272-13-19, 272-13-18, http://nauka-nanrk.kz / biological-medical.kz
© National Academy of Sciences of the Republic of Kazakhstan, 2017 Address of printing house: ST "Aruna", 75, Muratbayev str, Almaty
N E W S
OF THE NATIONAL ACADEMY OF SCIENCES OF THE REPUBLIC OF KAZAKHSTAN SERIES OF BIOLOGICAL AND MEDICAL
ISSN 2224-5308
Volume 4, Number 322 (2017), 5 – 11
UDC57.044
B. N. Aubakirova, R. R. Beisenova, A. K. Zhamangara L. N. Gumilyov Eurasian national university, Astana, Kazakhstan.
E-mail: [email protected], [email protected], [email protected]
THE EFFECT OF PHARMACEUTICAL INGREDIENTS TO THE GROWTH OF ALGAE
Abstract. The consumption of pharmaceuticals has been increasing every year. Drugs have started to cause concern due to their occurrence in surface water around the world. It was found that pharmaceuticals have an adverse effect to the aquatic organisms. The aim of the following study was to assess the effect of three priority pharmaceutical ingredients in Kazakhstan as amoxicillin, clarithromycin and azithromycin to the growth of aquatic species. Chlorella sp. was selected as object of the study. The toxicity study was conducted according to OECD Guideline for the testing of chemicals 201. According to results, the half maximal effective concentrations (EC50) of amoxicillin, clarithromycin and azithromycin to Chlorella sp.were 853.54±0.27, 0.59±0.004 and 0.33±0.05 mg/L respectively. Overall, the results of the study showed high toxicity of macrolides to algae, while amoxicillin was considered as non-toxic substance to Chlorella sp.
Key words: amoxicillin, clarithromycin, azithromycin, algae, pharmaceutical ingredients, antibiotics, ecoto- xicity, environment.
Introduction. Currently, pharmaceutical products are consumed everyday worldwide. In the last three decades of the studies, pharmaceuticals were classified as environmental pollutants and it was concluded that they can lead to environmental contamination and even cause risk to human health [1].
There are various ways of release of pharmaceuticals to aquatic environment. They excrete after consumption in parent form or as metabolites. Then, primarily drugs dispose via wastewater. Also, one of the major sources of release human medicines after their excretion or disposal of unused drugs is municipal wastewater [2, 3].
The environmental effect of pharmaceuticals has been considered in many reports. According to the US Geological Survey, 80% of surface water and about 25% of groundwater in the United States are contaminated with drugs [4]. These pharmaceutical substances are representative of different therapeutic classes as analgesics, beta-blockers, fibrates, antiepileptic drugs and steroids. From the ecological and hygienic point of view, antibiotics, drugs with cytotoxic action are the most unfavorable for the ecosystem [5, 6].
The study of the effect of synthetic steroids 17α-ethinyl estradiol (EE2) and 17α-methyltestosterone (MT) to the snails Marisa cornuarietis was carried out by Schulte-Oehlmann in 2004. It was found that even in concentration 0.25 µg/L MT induced the imposex in snails in 4 weeks. EE2 led to the develop- ment of imposex in snails in concentration 0.25-1 µg/L. Furthermore, these steroids formed germ cells in the male and female gonads [7].
Pharmaceuticals have effect on terrestrial organisms as earthworms. There was conducted the study on toxicity of three pharmaceutical compounds as acetaminophen, naproxen and ibuprofen to Eisenia- fetida in concentration from 0.1 mg/L to 100 mg/L. The test lasted 21 days. The highest concentration of acetaminophen was toxic to the earthworms. There was above 70% of growth inhibition in concentration of acetaminophen. Moreover, the growth rate decreased in 4 times in comparison with controls [8].
In a study which set out to determine the toxicity effect of antibiotics Lemna minor, Aubakirova et al.
pointed that sulfamethoxazole had toxic effect to macrophytes. The half maximal effect concentration
Известия Н (EC50) of t of duckwe The clarithrom based on t was found effect to e
Chlor role in tot environme noted, that Mate purity of s toxicity te
Chemical
CAS-no Molecular Molecular pKa Solubility LogKow
Chlor operation from the “ 96 h. The samples w in culture amoxicilli The calcu biomass w Basically, in room t compound at the begi Resu antibiotics each activ be noted th
Национально this antibioti eeds [9].
present pap mycin, and az
the risk of ph d that these c
nvironmenta rella sp. wer tal biomass i ent. Howeve
t risk assessm erials and m
substances w est.
structure
r formula r weight, g/mol
in water, mg/L
rella sp. grow and Develop
“Applied Ec e Chlorella sp were grown o
chamber. Th in. Algae num ulation of the
was conducte 20 % of tes temperature ds, we measu
inning and en ults and dis
s to Chlorella ve pharmaceu
hat algae sho
ой академии н ic was 3.67 m
er is focuse zithromycin t harmaceutica compounds a al species [10 re selected fo in the aquati er, there have ment results methods. Pha were >95%. T
Table A
2678 C16H 365.4 3.23 L 3430 0.87
wth inhibitio pment Guide cology” Labo sp. was cultu on 50 mL of he tested con mbers and b e algae cell ed by photom
t sample was for at least ured optical nd of the tes scussion. Th a sp. The sum utical ingredi owed high se
наук Республ mg/L. The co ed on toxici
to Chlorella als to aquatic are likely to 0].
or use in the ic system. M e not been pe
pay a big att armaceutical Table 1 prov
1 – Physico-ch Amoxicillin
87-78-0 [12]
H19N3O5S [12]
40416[13]
[12]
0 [12]
[12]
on test was p eline for the oratory of L ured in 100 m
this media a ncentrations r biomass in ea was done in meter accord s spiked to 1 t 3 h. In or density at 72 t.
he aim of th mmary resul ient to repres ensitivity to m
лики Казахст oncentration ity effect of
sp. The anti c environme occur in surf present ecot Moreover, alg erformed man tention repre
ingredients vides informa
hemical properti
[12]
performed ac testing of ch .N.Gumilyov mL of Tami at 29±0.5°C u
ranged 0.01- ach flask wa n Goryav cha
ding to May 1:1 mixture o rder to asses 20 nm in 5 m he following lt of half max sentatives of macrolides in
тан
100 mg/L o f three majo ibiotics were nts in Kazak face water o toxicity stud gae are a ma ny toxicity t sentatives of
were supplie ation about t
ies of study ant Clarithromyci
81103-11-9 [1 C38H69NO13[1 747.953 [13]
8.99 [12]
1.693 [13]
3.16 [12]
ccording to T hemicals 201 v Eurasian N iya medium
under consta -0.15 mg/L f as assessed at
amber under yer et al. met of DMSO an
ss the sensit mm rectangu g assessmen ximal effect f aquatic biot n comparison
of sulfametho or used anti e chosen usin khstan. In Au f waters and dy. Overall, a ajor carbon est of antibio f aquatic orga ed from Sigm the present c
tibiotics n
[12]
12]
2]
The Organiza 1 [14]. Chlor National Uni in 250 ml E ant shaking ( for macrolide
t the beginni r microscope thod with sl nd acetone an
tivity of Ch ular quartz cu nt was to ev
concentratio ta is demonst n with amox
oxazole led t ibiotics as a ng a prioritiz ubakirova et d could have algae play an
sources for otics on alga anisms [11].
ma Aldrich U compounds u
Azithromy
83905-01-5 C38H72N2O1
748.98448[
8.74 [12]
2.37 [13]
4.02 [13]
ation for Eco rella sp. were
iversity. The Erlenmeyer f (100 cycles p es and 1-100
ing and end e. The measu light modific nd left in the hlorella sp.
uvette with p valuate the ons (EC50) ca trated in Tab xicillin.
to mortality amoxicillin, zation study al. study it an adverse n important the aquatic ae. It can be UK and the used for the
ycin
[12]
[12]
12 [12]
13]
onomic Co- e presented e test lasted flasks. Test per minute) 00 mg/L for of the test.
urement of cation [15].
dark place to the test photometer
toxicity of alculated of ble 2. It can
Table 2 – The comparison of EC50 parameters of tested pharmaceuticals to Chlorella sp. EC50 – half maximal effective concentration
Antibiotics EC50 of Chlorella sp., mg/L
Azithromycin 0.33±0.05 Clarithromycin 0.59±0.004 Amoxicillin 853.54±0.27
Clarithromycin is a macrolide antibacterial and its structure is common to erythromycin [16]. People get used to consume this drug to treat respiratory infections, skin infections, ear infections, and sexually transmitted diseases [17]. The growth inhibition and growth rate of macrolide clarithromycin is illustrated in Figure 1. The following substance demonstrated above 94% of inhibition of algae biomass in concen- tration 0.15 mg/L after 96 h of exposure. The growth rate decreased in 3 times (0.16±0.08 d-1) in compa- rison with controls (0.37±0.04 d-1). These results are in agreement with Baumann et al. results where 10%
of effect concentration (EC10) values ranged of 23-28 µg/L for clarithromycin and its metabolite for Desmodesmussubspicatus, while this value for Anabaena flos-aquae was 1.1 µg/L [18]. In 2015 Marx et al. paper has stated that clarithromycin cannot be eliminated from wastewater treatment at all and its excretion rate is 60% [19]. Baumann et al. paper highlights that the concentration of our test macrolide in STP effluents varied 30-600 ng/L. This drug was detected in surface waters in concentration 140 ng/L annually, in 2008 it reached 330 ng/L. There were found the concentration around 5-70 ng/L of this com- pound in main Bavarian rivers. The concentration in small rivers was up to 360 ng/L in 2004-2008 [18].
Figure 1 – The growth inhibition and growth rate of clarithromycin to Chlorella sp. (p<0,05)
Azithromycin is a macrolide antibiotic and it has a wide spectrum. It is consumed to treat and prevent diseases as toxoplasmosis, pediatric infections and respiratory tract infections [20]. The present antibiotic can widely spread to the tissue. Azithromycin accumulate in intracellular cells as fibroblasts, phagocytic cells, and other white blood cells [21].
The high sensitivity of Chlorella sp. to azithromycin was seen in low concentration during the test (Figure 2). In concentration 0.2 mg/L the growth pace decreased in almost 4 times in comparison with controls. The growth inhibition reached more than 87 % even in concentration 0.15 mg/L. These results are consistent with those of other studies and suggest that macrolides are very toxic to cyanobacteria and algae, as it has impacts on the growth of Gram-positive bacteria by hindering with the protein synthesis
0 0,1 0,2 0,3 0,4
0,00 20,00 40,00 60,00 80,00 100,00 120,00
0 20 40 60 80 100 120 140 160
Growth rate
Growth inhibition, %
Concentration, ug/L Growth inhibition Growth rate
Известия Национальной академии наук Республики Казахстан
Figure 2 – The growth inhibition and growth rate of azithromycin to Chlorella sp. (p<0,05)
[2]. There insufficient studies were conducted on toxicity of azithromycin to algae. Nevertheless, in 2016 Zhou et al argued that our tested macrolide can lead to the risk in urban rivers. According to his finding, EC50 value in algae test was 0.026 mg/L for azithromycin. This value is lower than 1 mg/L as in our case (EC50=0.33mg/L), it can be concluded as very toxic to aquatic environment. Moreover, as previous our tested macrolide (clarithromycin), there is 0% of elimination in wastewater treatment of azithromycin. The concentration of following macrolide antibiotic in Yangpu District of Shanghai in China was 17 ng/L [22]. As noted by Osorio et al. (2016) azithromycin was widely spread and concentrated antibiotic in Iberian River basins in Spain [23].
Amoxicillin is a widely spread β-lactam penicillin antibiotic, that used in human and veterinary medicine and included to the significant drug on the World Health Organization [24, 25]. People consume amoxicillin to heal various infections induced by bacteria, such as bronchitis, pneumonia, tonsillitis, gonorrhea, and infections of the nose, throat, ear, skin, or urinary tract [17]. Chlorella sp. did not show sensitivity to amoxicillin in high concentrations. There was a slight growth inhibition (2%) of Chlorella sp. to this antibiotic in concentration 1 mg/L, while in 1000 mg/L was reached only 57% (Figure 3).
Figure 3 – The growth inhibitionand growth rate of Chlorella sp. to amoxicillin (p<0,05) 0 0,1 0,2 0,3 0,4 0,5
0 20 40 60 80 100 120
0 50 100 150 200 250
Growth rate
Growth inhibition, %
Concentration, ug/L Growth inhibition Growth rate
0 0,1 0,2 0,3 0,4 0,5
0 10 20 30 40 50 60 70
0 200 400 600 800 1000 1200
Growth rate
Growth inhibition, %
Concentration, mg/L Growth inhibition Growth rate
Amoxicillin showed fully logarithmic (r2=0.98) decline in growth rate. In comparison with controls (0.45±0,006 d-1) the growth rate decreased twice in concentration 1000 mg/L (0,26±0,02 d-1). Although, these results hardly differ from previous study, where 72 h of exposure with amoxicillin to green algae Pseudokirchneriellasubcapitata showed less 10% of inhibition in concentration 1500 mg/L and was considered as not toxic to algae. This inconsistency may be due to comparable different standardized approaches and species for the assessment of the antibiotic to algae. Nevertheless, our and Gonzalez- Pleiter et al. results classified amoxicillin as non-harmful to algae species [26].
In comparison with other tested substances, EC50 value is significantly higher and it shows that amoxicillin less toxic. A possible explanation for these results may be attributed to its quick degradation and low bioavailability [27].
To sum up, it was found that aquatic species is sensitive to macrolides. Azithromycin and clarithro- mycin have a higher toxicity on Chlorella sp. in comparison with Lemna minor. The EC50 value of them was lower than 1 mg/L and can be considered as very toxic to algae. The EC50 value of azithromycin to Lemna minor lower than 10 mg/L and therefore it is related to toxic classes of substances.
There is no doubt that pharmaceuticals play a significant role in order to treat and mitigate human and animals from diseases. However, they can influence to the environment unintendedly [28]. In the last 30 years, the occurrence, fate and risk of pharmaceuticals to the environmental species have been investigated by many researchers. However, we still have a limited data on ecotoxicological data of drugs.
Therefore, it is significant to conduct toxicity studies on pharmaceuticals to establish monitoring system and prevent pharmaceutical contamination.
REFERENCES
[1] Kummerer K. (2010) Pharmaceuticals in the Environment, Annu Rev Environ Resour, 35(1):57-75.
DOI:10.1146/annurev-environ-052809-161223
[2] Fent K, Weston A, Caminada D. (2006) Ecotoxicology of human pharmaceuticals, AquatToxicol, 76(2): 122-159.
DOI: 10.1016/j.aquatox.2005.09.009
[3] Boxall A, Rudd M, Brooks B, Caldwell D, Choi K, Hickmann S, Innes E, Ostapyk K, Staveley JP, Verslycke T, Ankley GT, Beazley KF, Belanger SE, Berninger JP, Carriquiriborde P, Coors A, Deleo PC, Dyer SD, Ericson JF, Gagné F, Giesy JP, Gouin T, Hallstrom L, Karlsson MV, Larsson DG, Lazorchak JM, Mastrocco F, McLaughlin A, McMaster ME, Meyerhoff RD, Moore R, Parrott JL, Snape JR, Murray-Smith R, Servos MR, Sibley PK, Straub JO, Szabo ND, Topp E, Tetreault GR, Trudeau VL, Van Der Kraak G. Pharmaceuticals and personal care products in the environment: what are the big questions? (2012) Environ Health Perspect, 120(9):1221-1229. DOI:10.1289/ehp.1104477
[4] Shah S. As Pharmaceutical Use Soars, Drugs Taint Water and Wildlife. Environment 360. Accessed 22.03.2015.
Available from http://e360.yale.edu/feature/as_pharmaceutical_use_soars_drugs_taint_water_and_wildlife/2263/
[5] Sumpter J (2010) Pharmaceuticals in the Environment: Moving from a Problem to a Solution: in Green and Sustainable Pharmacy. Ed. Kummerer K., Hempel M. Springer-Verlag Heidelberg, Berlin. ISBN: 978-3-642-05198-2
[6] Litvinova N (2009) Ecological potential of innovative production of herbal remedies [Jekologicheskij potencia linnovacionnogo proizvodstva fitopreparatov] 7(63):28-30. (In Russian)
[7] Schulte-Oehlmann U, Oetken M, Bachmann J, Oehlmann J (2004) Effects of Ethinyloestradiol and Methyltestosterone in Prosobranch Snails: in Pharmaceuticals in the Environment. Sources, Fate, Effects and Risks. Ed. Kummerer K. Springer- Verlag Heidelberg, Berlin. ISBN:978-3-662-09259-0.
[8] Boxall ABA, Aubakirova BN,Khanturin MR,Beisenova RR. (2014) Toxicity of pharmaceuticals to earthworms, Bulletin of the Karaganda University, 3(75):4-10.
[9] Aubakirova BN, Boxall ABA, Beisenova RR. (2017) Toxicity study of antibiotics to the common duckweed (Lemna minor), Bulletin of the Karaganda University, 1(85): 15-20.
[10] Aubakirova BN, Beisenova RR, Boxall ABA. (2017) Prioritization of Pharmaceuticals Based on Risks to Aquatic Environments in Kazakhstan, Integr Environ Assess Manag. DOI:10.1002/ieam.1895
[11] Ebert I, Bachmann J, Kuhnen U, Kuster A, Kussatz C, Maletzki D, Schlüter C. (2011) Toxicity of the fluoroquinolone antibiotics enrofloxacin and ciprofloxacin to photoautotrophic aquatic organisms, Environ ToxicolChem, 30(12):2786-2792.
DOI: 10.1002/etc.678
[12] Wishart DS, Knox C, Guo AC, Shrivastava S, Hassanali M, Stothard P, Chang Z, Woolsey J. (2006) DrugBank: a comprehensive resource for in silico drug discovery and exploration, Nucleic Acids Res. 34:668-672. DOI: 10.1093/nar/gkj067
[13] Kim S, Thiessen PA, Bolton EE, Chen J, Fu G, Gindulyte A, Han L, He J, He S, Shoemaker BA, Wang J, Yu B, Zhang J, Bryant SH. (2016) PubChem Substance and Compound databases, Nucleic Acids Res, 44(1):1202-1213.
DOI: 10.1093/nar/gkv951
Известия Национальной академии наук Республики Казахстан
[14] OECD. The Organisation for Economic Co-operation and Development. OECD guidelines for the testing of chemicals Freshwater Alga and Cyanobacteria, Growth Inhibition Test No 201. Accessed on 01.11.2016. Available from http://www.oecd.org/chemicalsafety/testing/1946914.pdf
[15] Mayer P, Cuhel R, Nyholm N. (1997) A simple in vitro fluorescence method for biomass measurements in algal growth inhibition tests, Water Research. 31(10):2525-2531. DOI:10.1016/S0043-1354(97)00084-5
[16] Fraschini F, Scaglione F, Demartini G. (1993) Clarithromycin clinical pharmacokinetics, ClinPharmacokinet, 25(3):189- 204.
[17] Drugs.com. Database for Drugs, 2016. Accessed 01.11.2015. Available from https://www.drugs.com/
[18] Baumann M, Weiss K, Maletzki D, Schussler W, Schudoma D, Kopf W, Kuhnen U. (2015) Aquatic toxicity of the macrolide antibiotic clarithromycin and its metabolites, Chemospher, 120:192-198. DOI: 10.1016/j.chemosphere.2014.05.089
[19] Marx C, Muhlbauer V, Krebs P, Kuehn V. (2015) Species-related risk assessment of antibiotics using the probability distribution of long-term toxicity data as weighting function: a case study, Stoch Environ Res Risk Assess, 29(8):2073–2085.
DOI:10.1007/s00477-015-1026-4
[20] Zubata P, Ceresole R, Rosasco M, Pizzorna M. (2002) A new HPLC method for azithromycin quantitation, J Pharm Biomed Anal, 27:833-836. DOI: 10.1016/s0731-7085(01)00554-4
[21] Matzneller P, Krasniqi S, Kinzig M, Sorgel F, Huttner S, Lackner E, Muller M, Zeitlinger M. (2013) Blood, Tissue, and Intracellular Concentrations of Azithromycin during and after End of Therapy, Antimicrob Agents Chemother, 57(4): 1736-1742.
DOI: 10.1128/aac.02011-12
[22] Zhou H, Ying T, Wang X, Liu J. (2016) Occurrence and preliminarily environmental risk assessment of selected pharmaceuticals in the urban rivers, China, Sci Rep, 6(1):1-10. DOI: 10.1038/srep34928
[23] Osorio V, Larranaga A, Acena J, Perez S, Barcelo D. (2016) Concentration and risk of pharmaceuticals in freshwater systems are related to the population density and the livestock units in Iberian Rivers, Sci Total Environ,540:267–
277.DOI:10.1016/j.scitotenv.2015.06.143
[24] Pan X, Deng C, Zhang D, Wang J, Mu G, Chen Y. (2008) Toxic effects of amoxicillin on the photosystem II of Synechocystis sp. characterized by a variety of in vivo chlorophyll fluorescence tests, AquatToxicol, 89(4):.207-213.
DOI:10.1016/j.aquatox.2008.06.018
[25] Brittain HG, Florey K. (1994), Analytical profiles of drug substances and excipients. Academic Press Limited, London.
ISBN: 978-0-12-260829-2
[26] Gonzalez-Pleiter M, Gonzalo S, Rodea-Palomares I, Leganes F, Rosal R, Boltes, K, Marco E, Fernandez-Pinas F.
(2013) Toxicity of five antibiotics and their mixtures towards photosynthetic aquatic organisms: Implications for environmental risk assessment, Water Res, 47(6):2050–2064. DOI:10.1016/j.watres.2013.01.020
[27] Fu L, Huang T, Wang S, Wang X, Su L, Li C, Zhao Y. (2017) Toxicity of 13 different antibiotics towards freshwater green algae Pseudokirchneriellasubcapitata and their modes of action, Chemosphere, 168:217–222.
DOI:10.1016/j.chemosphere.2016.10.043
[28] DaughtonC, Ruhoy I. (2009) Pharmaceuticals and Sustainability: Concerns and Opportunities Regarding Human Health and the Environment, In: A Healthy Future: Pharmaceuticals in a Sustainable Society, ed. Sverige A.B. Elanders, Stockholm:15- 39. ISBN:2184-01.
Б. Н. Аубакирова, Р. Р. Бейсенова, А. Қ. Жаманғара
Л. Н. Гумилев атындағы Еуразия ұлттық университеті, Астана, Қазақстан БАЛДЫРЛАР ӨСУІНЕ ФАРМАЦЕВТИКАЛЫҚ ИНГРЕДИЕНТТЕРДІҢ ƏСЕРІ
Аннотация. Əр жыл сайын дəрілік препараттарды тұтыну көлемі ұлғаюда. Фармацевтикалық препа- раттар дүниежүзінде беткей суларда анықталуы ғылымда алаңдаушылық туғыза бастады. Дəрілік заттар су ағзаларына жағымсыз əсер тигізеді. Берілген мақаланың мақсаты Қазақстандағы үш приоритетті амоксициллин, кларитромицин жəне азитромицин сияқты фармацевтикалық ингредиенттерінің су ағзалар түрлерінің өсуіне əсерін бағалау. Зерттеу нысанасы ретінде Chlorella sp. алынды. Нəтижелерге сəйкес, амок- сициллин,кларитромицин жəне азитромицин балдырларға жартылай максималды əсер ету концентра- циялары сəйкесінше853.54±0.27,0.59±0.004 жəне 0.33±0.05 мг/л болды. Тұтас алғанда, зерттеу нəтижелері макролидтердіңбалдырларға жоғары улылығын көрсетті. Алайда амоксициллинChlorella sp.түріне улы емес болып танылды.
Түйін сөздер: амоксициллин, кларитромицин, азитромицин, балдырлар, фармацевтикалық ингредиент- тер, экотоксикология, қоршаған орта.
Б. Н. Аубакирова, Р. Р. Бейсенова, А. Қ. Жаманғара Евразийский национальный университет им. Л. Н. Гумилева
ВЛИЯНИЕ ФАРМАЦЕВТИЧЕСКИХ ИНГРЕДИЕНТОВ НА РОСТ ВОДОРОСЛЕЙ
Аннотация. Потребление лекарственных препаратов растет каждый год. Фармацевтические препараты начали вызывать беспокойство в связи их обнаружением в поверхностных водах во всем мире. Выявлено, что лекарственные субстанции оказывают негативное влияние водным организмам. Цель статьи – дать оцен- ку таким приоритетным фармацевтическим ингредиентам, как амоксициллин, кларитромицин и азитроми- цин к росту водных организмов. Chlorellasp.был выбран как объект исследования. Согласно результатам, полумаксимальная эффектная концентрация (EC50) к малой ряске амоксициллина, кларитромицина и азитромицина были 853.54±0.27, 0.59±0.004 и 0.33±0.05 мг/л соответственно. В целом результаты исследо- вания показали высокую токсичность макролидов к водорослям. Тем не менее, амоксициллин оказался нетоксичным к Chlorellasp.
Ключевые слова: амоксициллин, кларитромицин, азитромицин, водоросли, фармацевтические ингре- диенты, экотоксикология, окружающая среда.
Известия Национальной академии наук Республики Казахстан N E W S
OF THE NATIONAL ACADEMY OF SCIENCES OF THE REPUBLIC OF KAZAKHSTAN SERIES OF BIOLOGICAL AND MEDICAL
ISSN 2224-5308
Volume 4, Number 322 (2017), 12 – 18
UDC 577.175.14
Z. M. Biyasheva, A. N. Zhumabai, A. M. Shaizadinova, M. Zh. Tleubergenova, S. D. Sarzhanova Al-Farabi Kazakh National University, Research Institute of Biology and Biotechnology Problems,
Almaty, Kazakhstan.
E-mail: [email protected]
MUTAGENIC EFFECTS OF ALPHA RADIATION IN DROSOPHILA TEST-SYSTEM
Abstract. There is a long period of time between an agent intervention on a living organism and biological consequences. For this reason, methods for determining a potential mutagenic activity of individual environmental components and natural complexes are required. We used a traditional Muller-5 (Basc) test based on Drosophila melanogaster for testing the influence of ecological factors. Due to this test system, we analyzed genetic effects of α-radiation, which is formed during the radioactive decay of radon daughter products. The test system was used to detect mutations with an autonomous manifestation. Now days, it is also used for detecting conditional mutations with non-autonomous manifestation, which form special features related to an invariant part of species appearance of a living organism. The most striking property of conditional mutations is morphoses formation. In our research, the morphoses appeared in the second generation and were due to the presence of conditioned mutations in parents taken from the F1. The primary inducer of the conditional mutations emergence was ionizing α-radiation, and in the next generation they were supplemented by the genetic characteristics of the parents being the inversions. The revealed morphoses formed a characteristic group of deformities: blackspots (melanomas) or white spots on a body; curled, curved, or undirected wings; blister on the wings, without one wing, with deformation of the head, thorax and abdo- men, mutation of sterility. Sterility was tested in several generations of flies. A characteristic feature of all morpho- ses is asymmetry and it is defined as a genetically unstable variation of individual morphogenesis associated with changes in the environment. A statistical analysis of experimental data in the Muller-5 test system (Basc) showed that α-radiation has a mutagenic effect with a probability of not less than 95%.
Key words: radon, emanation, α-radiation, inversion, Basc, Drosophila, morphoses.
Introduction. Almaty is a city with the highest natural radiation in Kazakhstan, which rich in such natural resources as minerals, metal ores and natural gas and oil reserves. Kazakhstan has 12 % of the world’s uranium resources and may be exposed to a variety of hazardous materials including radon, a radioactive gas occurring naturally as an indirect decay product of uranium. Radon gets out of the earth surface through 5 tectonic faults crossing the city territory. Radon and its decay products are sources of α- radiation - a stream of heavy positively charged particles [1]. In nature, alpha particles occur as a result decay of heavy elements atoms, such as uranium, radium and thorium. Emanation (a release of radon into the air pores) happens when the radium decay took place near the soil surface and it was mainly carried out by recoil energy produced by a radon nucleus in the process of radium nucleus disintegration.
Most of radiation is produced not so much from radon but its decay daughter products. Radon emissions are supposed to be dangerous for living organisms and can cause oncological diseases in humans. In human body, radon facilitates some processes also leading to lung cancer. The decay of radon nuclei and its daughter isotopes in the lung tissue causes a micro-burn, as the whole alpha particles energy is absorbed at its decay point. Combination of radon and smoking is especially hazardous and increases the disease risk. According to the US Department of Health, radon had regarded to be the second factor (after smoking) that causes lung cancer, mostly, of bronchogenic (central) type. Lung cancer caused by radon irradiation is the sixth most frequent reason causing death from cancer [2]. Radon
radionuclides cause more than a half radiation dose, which a human body receives from natural and technogenic environmental radionuclides [3-4].
For this reason, the aim of present work is α-radiation mutagenic activity by Drosophila melanogaster test-system based on Meller-5 or Basc method.
Materials and methods. The uranium isotope – U238 isotope was used as source of α-radiation used.
Alpha-rays is one of the ionizing radiation types performing a stream of rapidly moving, positively charged particles (alpha-particles). The main source of this radiation is the radioactive isotopes and daughter products of a natural radon gas. One of the peculiarities of alpha-radiation is its low penetrating power. Alpha particles range in matter (that is a path where ionization is producing) is very short (hundreds of millimeter in biological media, 2.5-8 cm in air). However, along a short path, alpha particles create a great number of ions. That provides a relative biological efficiency, 10 times greater than when exposing the X-ray and gamma radiation.
Testing of α-radiation genetic activity was carried out using the fruit fly Drosophila melanogaster.
So, some tests based on incidence of different mutations types have been developed for drosophila. The processes occurring in the Drosophila melanogaster are extremely interesting for the community of researches engaged in developmental genetics [5]. This fly is chosen as an object in the variety genetic schemes, as it is one of the highly researched and well characterized higher organisms in genetics.
Approximately 2/3 of genes that are responsible for a human disease are homologous to genes in Droso- phila melanogaster genome. The main biochemical processes in Drosophila melanogaster and mammalian cells are identical. Also, one of the Drosophila melanogaster main advantages lies in the fact that in meta- bolism process a microsomal activation of substances occurs, when promutagens can be converted into mutagens. This makes it possible to find invisible mutagens, which acquire genotoxicity in metabolism process. Tests based on Drosophila melanogaster are recommended by WHO for studying the mutagenic and toxic activity of anthropogenic xenobiotics and pharmacological agents [6].
A traditional Muller-5 (Basc) test based on Drosophila melanogaster was used for testing mutagenic activity of α-radiation. Muller-5 method allows to identify lethal and morphological mutations in the F2 (second generation) X-chromosome. The body of Drosophila, like those of all other insects, is divided into segments having certain morphological differences [7]. All flies were identified by their eyes, wings and bristles, because they contained yellow and white genes [8]. We divided males of Oregon wild- type into two samples: the first sample with the males was irradiated by the U isotope at the exposure of 20-24 hours, and the second control sample was placed nearby, which was not exposed to α-radiation.
To obtain F1 in the Muller-5 (Basc) test system, we used parents different in body and eyes color as well as the shape, because it greatly facilitates females and males identification for parents crossing and second generation analysis.
Presence or absence of males in the population can be determined in a tube without anesthesia.
Flies crossing for getting F1 was carried out massively and individually for F2 females. The scheme provides an opportunity for F2 flies crossing without selecting the virgin females. One female from the first generation and two or three M-5 males from the original tube or from the M-5 line have been places in the test tube. For females, such crossing was individual, and the number of tubes was corresponded to half of the analyzed X-chromosomes [9-10]. Sterility was tested using several generations of flies.
The test scheme and a line of flies in the experiment is known as Muller-5 method. This method was developed by H. J. Muller for identifying and recording recessive, sex-linked lethal mutations in drosophila. In the X-chromosome of this line there are 2 inversions – sc8 and – sc49 (δ 49), which impede a crossing-over between sex chromosomes. The sc8 inversion captures a major part of X-chromo- somes. Since crossing occurs in long inversions, another, shorter inversion δ 49, is introduced into the sc8 inversion. So, the δ 49 inversion suppresses the cross in the middle region of the X-chromosome. The genes order in sc8 δ 49 chromosome is violated twice, therefore the cross in it is completely excluded. As a result, both inversions are not associated with a recessive lethal effect, and females homozygous for the Muller-5 chromosome and the same hemizygotic males are viable [6].
A recessive mutation -apricot eyes and dominant mutation Bar-striped eyes serve as phenotypic markers (Figure 1). We obtained two phenotypic classes of females and in the second generation (F2). In the first generation (F1) we received B / + females, carrying in the heterozygote X-chromosome of Muller- 5 and irradiated male’s X-chromosome, and males bearing the Muller-5 X – chromosome in a hemizygot.
Известия Н The reces because of mosome. T
The c Resu according logical mu mutations formation morpholog ditioned m case of al and black even comp
Figure
4 – yellow m
F2 ana toxic effec was estim
Национально ssive lethal f locking cr This makes i
Fi
cultures of th ults and thei to the sche utations afte , which are is a consid gical disturb mutants, is c lpha-radiation
plaques, asy plete disappe
2 – The schem in X-chrom heterozygote b males with a let
alysis did no ct of α-radia ated (Table
ой академии н cannot mo rossing-over it possible to
igure 1 – Mulle
he genetic lin ir discussio eme shown i er the second responsible derable phen bances, caus considered to
n induction ymmetrical b earance of w
me of flies crossi mosome: 1 – Mu by inducing leth
thal mutation in
ot reveal rece ation on indiv
1).
наук Республ ove from th
between th o bring the irr
er-5 line flies: o
nes and all cr n. Genetic a in Figure 2.
d-generation for forming nomenon of ed by paren o be differen the offsprin body) and win wing) (Figure
ing according to uller-5 females hal mutations in n X-chromosom
essive sex-lin vidual devel
лики Казахст he irradiate he irradiated radiated chro
on the left male
rosses were k analysis of α
Every cultu flying-out.
interspecies conditional nt genetic pe nt manifestat g were char ng: moderate
3) [8].
o Muller-5 meth
; 2 – females w n X – chromoso me are not devel
nked mutatio lopment of fl
тан
d chromoso d normal chr omosome to
(smaller) and f
kept and prop α-radiation m ure is analyz
The conditio s of similar c mutations.
eculiarities.
tion rates of acterized by e, medium, p
hod for revealin with a gray body ome; 3 – gray m lop. Irradiated X
ons. Neverthe flies, the freq
ome to the romosome a
a hemizygou
female on the ri
pagated on a mutagenic ac zed visually
onal mutatio characteristic
"Morphosis The morpho f developmen y mutant phe
pronounced,
ng lethal and m y, with narrow a males with narro X-chromosome
eless, to eval quency of oc
Meller-5 chr and the Mull us state [11].
ght
a standard me ctivity was
for revealin ons are regul cs [13]. The s" means no
osis, appeari ntal disturba enotype of b extreme (red
morphological m apricot eyes, ow apricot eyes e is shown as a b
luate the pos ccurrence of
romosome, ler-5 chro-
edium [9].
carried out ng morpho-
latory gene morphosis on-inherited ng in con- ance. In the body (white duction and
mutations
;
bold line [11]
sible geno- morphoses
Table 1– Frequency of morphoses in flies irradiated with α-particles and without it Index
Sample
Number of flies analyzed (absolute)
Absolute frequency of morphoses
Relative frequency of morphoses, %
With α-radiation (expirement) 3848 28 0.73±0.04
Withoutα-radiation (control) 3700 10 0.27±0.01
Classical genetics is built on mutations with an autonomous manifestation, based on inheritance signs laws. The Muller-5 (Basc) test system used was designed to evaluate just such mutations. At the present time we began studying mutations with non-autonomous manifestation, which form special features related to an invariant part of species in a living organism appearance. The researchers named such mutations – conditional mutations and received them in Drosophila under the influence of ionizing radiation (X-ray irradiation) [13].
One of the main conditions for manifesting a conditional mutation was the presence of chromosome rearrangement in the genotype. At the time being, a conditional mutation is called a local DNA damage, its manifestation being depending on the structure of other genome regions. The most striking property of conditional mutations is the morphoses formation. The term "morphosis" is used to determine non-inhe- rited morphological disorders (deformities) caused by the exposure of extreme environmental factors.
In the genetic literature, morphosis is defined as a non-adaptive and unstable variation of individual morphogenesis, associated with the changes in the external environment. In our experiment, the morpho- ses were manifested in the second generation (F2) and were due to the presence of conditioned mutations in parents taken from F1. A primary inducer of conditional mutations emergence was α-radiation, and in the second generation they were joined by genetic characteristics of the parents - these are inversions. The morphoses in our experiment formed a very specific group of deformities (Figure 3).
Figure 3 – Morphosis of the second generation according to Muller-5 test-system:
A, B –black plaques on a body; C – moderate mutant wing phenotype (improperly outspreaded wing);
D – pronounced mutant wing phenotype (improperly outspreaded wing);
E – extreme mutant wing phenotype – a right wing in the form of an unstructured bubble;
F – morphoses combination - extreme mutant wing phenotype(without a wing), deformation of the head, thorax and abdomen
Известия Национальной академии наук Республики Казахстан
Most morphoses do not prevent flies from hatching out of pupa, existing, mating, and even giving offspring. The researchers also encounter with cases of morphoses forming, but occurs not so often [13].
As seen in Figure 3, a peculiar feature of all morphoses is asymmetry. They can be distributed over all parts of the body and affect the shape of the head, eyes, chest, legs and wings. Dark spots (or melanomas) similar to necrotic spots that contain conglomerates of dark tissue can appear on all parts of the body.
There can be a single or several individuals containing ugliness may arise. Thus, we found up to 6 morphoses in one F2 tube. All of them had an individual appearance. The morphoses appeared in F3, but unlike modifications, they did not reveal phenotypic invariance. So a wing morphosis in F2could be revealed as melanoma in F3 and vice versa. You can say that the type of morphosis is not inherited.
Experimental and control comparison of results was carried out by the Yates’ chi-squared test (Table 2) [12].
Table 2 – Experiment and control results in the 2x2 table [14]
Experiment
a (the number of flies without mutation and morphoses)
b
(the number of flies with mutation and morphoses)
3820 28 3848
Control
c
(the number of flies without mutation and morphoses)
d (the number of flies with mutation and morphoses)
3690 10 3700
7510 38 7548
A statistical experimental data processing in the Muller-5 test-system showed that χ2exp =6,99, а χ2table=3,8atk =1 and P≤ 0,05. Therefore at P≤ 0,05χ2exp> χ2table. For this reason we can affirm that alpha- radiation possesses a mutagenic effect.
Conclusion. Recessive, sex-linked lethal mutations, modifications and morphoses as the main criterion of α-radiation mutagenic effect evaluation in drosophila have been chosen. Classical genetics is based on mutations with an autonomous manifestation and in our case they are recessive lethal. Mutations with non-autonomous manifestation have been studied quite recently. Due to this, it stands to the reason that the genes, which are responsible for such mutations, form special signs. Basically, these are modi- fications and morphoses that touch on invariable part of organism’s morphology. A common method of mutations evaluation based on Drosophila melanogaster test-system has been used in the experiment. The RK Committee for the mutagenicity evaluation of pharmacological preparations recommends this test.
According to the results obtained, a statistically significant difference in the incidence of recessive lethal mutations and conditional mutations induced in the X-chromosome of the drosophila’s Oregon line males with alpha irradiation and without it has been shown. The nonparametric chi-square test demon- strated that the frequency distribution control is statistically different at 95% probability level in the experiment and control. Thus, mutagenic activity is revealed in drosophila by alpha-rays irradiation.
Acknowledgments. The Ministry of Education and Science of the Republic of Kazakhstan (grant 2554 / GF4) supported this study.
REFERENCES
[1] Bersimbaev R., Bulgakova O. (2015) The health effects of radon and uranium on the population of Kazakhstan, 37:18.
DOI: 10.1186/s41021-015-0019-3
[2] Darby S.,D. Hill, R. Doll (2001) Radon: A likely carcinogen at all exposures, 12:1341-1351. DOI:
10.1023/A:1012518223463
[3] Istochniki, jeffekty i opasnost' ionizirujushhej radiacii: Doklad Nauchnogo komiteta OON po dejstviju atomnoj radiacii General'noj Assamblee za 1988 g., s prilozhenijami: V 2-h t. T. 1.: Per. s angl. – M.: Mir, 1992. – S. 552 . il. ISBN:5—03—
002458—1
[4]Zashhita ot radona-222 v zhilyh zdanijah i na rabochih mestah. Publikacija MKRZ 65: Per. s angl. – M.: Jenergoatom izdat, 1995. – S. 68.ISBN: no
[5]Marilovtseva E.V., Omelyanchuk L.V. (2015) hrsGene and Borders of Compartments of ImaginalWing Disc in Drosophila melanogaster, DOI: 10.1134/S1022795415100117
[6]Ashby J. (1994) International Commission for protection against Environmental Mutagens and Carcinogens. Two million rodent carcinogenes. The role of SAR and QSAR in their detection // Mutation Research. vol. 305 (1). – P. 3-12. DOI: no
[7] Kyrchanova O.V., Leman D.V., Toshchakov S.V., Utkina M.V., Tikhonov M.V., Parshikov A.F., Maksimenko O.G., Georgiev P.G. (2016) Induction of Transcription through the scs Insulator Leads to Abnormal Development of Drosophila melanogaster, DOI: 10.1134/1022795416100057
[8] Kyrchanova O.V., Georgiev P.G. (2015) ThebithoraxCopmlex of Drosophila Melanogaster as a Model for Studying Specific Long-Distance Interactions between Enhancers and Promoters, DOI: 10.1134/S1022795415050038
[9] Bochkov N.P. (2004)Klinicheskaja genetika, 475. ISBN: 5-9231-0226-9
[10] Durnev A.D. (2011) Geneticheskaja toksikologija // Vestnik Rossijskoj akademii medicinskih nauk, № 9:35-43. (In Russian)
[11] Medvedev N. N. (1968) Prakticheskaja genetika. – 2-oe izd., isp. i dop. 43 – 45; 96-100. ISBN: 978-5-91827-017-2 [12] Tihomirova M.M., (1990) Geneticheskij analiz: Ucheb. Posobie, 280. ISBN: 5-288-00423-4
[13] Chadov B.F., E.V. Chadova, S.A. Kopyl, E.V. Artemova, E.A. Hockina, N.B. Fjodorova. (2004) Ot genetiki vnutrividovyh otlichij k genetike vnutrividovogo shodstva, 9:1157-1172. DOI: 10.4172/2329-8936.1000137
[14] Glotov N.V., Zhivotovskij A.A., Hovanov N.V., Hromov-Borisov N.N. (2005) Biometrics. L.: LGU. 264. ISBN: 5- 93972
З. М. Бияшева, А. Н. Жумабай, А. М. Шайзадинова, М. Ж. Тлеубергенова, С. Д. Саржанова Əл-Фараби атындағы Қазақ Ұлттық университеті, биология жəне биотехнология мəселелерінің ҒЗУ,
Алматы, Қазақстан
ДРОЗОФИЛАНЫҢ ТЕСТ-ЖҮЙЕСІНДЕГІ α-СƏУЛЕЛЕНУДІҢ МУТАГЕНДІ ƏСЕРІН ТАЛДАУ Аннотация. Aгенттің тіpі aғзaғa əcеp етуі жəне биoлoгиялық нəтижеcі көpіну apacындa үлкен уaқыт aйыpмaшылығы бoлaды, coндықтaн қopшaғaн opтaның жеке кoмпoненттеpі, комплекcтеpі cекілді пoтенциaл- ды мутaгенді белcенділікті aнықтaу үшін əдіcтеp қaжет. Экологиялық cтpеcc-фaктopлapдың генетикaлық aктивтілігін текcеpу үшін біз дəcтүpлі Меллеp-5 (Basc) теcт-жүйеcін Drosophila melanogaster-ге пaйдaлaнa oтыpып жүpгіздік. Paдoнның ыдыpaу өнімдеpі кезіндегі негізгі пaйдa бoлaтын α-cəулеленудің генетикaлық эффектіcін талдадық. Қолданған тест-жүйе классикалық генетикада мутациялардың автономды көріну жағ- дайына аңықтауға қолданылған. Қазіргі кезде автономды емес шартты мутациялардың көріну жағдайында қолданатын болды. Шартты мутациялар тірі организмнің түр бейнесінің өзгермейтін ерекше белгілерді қам- тамасыз етеді. Шартты мутациялардың анық қасиеті – ол морфоздардың пайда болуы. Біздің зерттеуімізде морфоздар екінші ұрпақта пайда болды жəне бірінші ұрпақтан алынған аталықтардағы шартты мутация- лармен негізделінген. Шартты мутациялардың пайда болуына біріншілік индуктор болып иондаушы α-сəу- лелер болды. Келесі ұрпақта оларды аталықтардың генетикалық ерекшеліқтері – инверсиялары толтырды.
Табылған морфоздар кемтарлықтардың сипатталған тобын құрастырды: дене бетіндегі қара (меланомалар), немесе ақ дақтар; оралған, майысқан, немесе жайылмаған қанаттар; қанаттардағы көпіршіктер, бір қанатсыз, бастың, көздің, торакстың жəне қарынның деформациясы, ұрықсыздықтың мутациясы. Ұрықсыздық шы- бындардың бірнеше ұрпақтарда тексерілді. Барлық морфоздардың сипатталған белгісі ассиметрия болды жəне ол қоршаған ортаның өзгерістерімен байланысты жеке морфогенездің генетикалық тұрақты емес ва- риациясы болып саналады. Меллер-5 (Basc) тест-жүйе статистикалық талдауы α-сəуленің 95%-дан кем емес сенімділікпен мутагенді əсерің көрсетті.
Түйін сөздер: радон, эманация, α-cəулелену, инверсия, Basc, дрозофила, морфоздар.
З. М. Бияшева, А. Н. Жумабай, А. М. Шайзадинова, М. Ж. Тлеубергенова, С. Д. Саржанова Казахский национальный университет имени аль-Фараби, НИИ проблем биологии и биотехнологии,
Алматы, Казахстан
АНАЛИЗ МУТАГЕННОГО ЭФФЕКТА α-ИЗЛУЧЕНИЯ В ТЕСТ-СИСТЕМЕ ДРОЗОФИЛЫ Аннотация. Между воздействием агента на живой организм и проявлением биологических последст- вий проходит часто большой промежуток времени, поэтому необходимы методики определения потен- циальной мутагенной активности как отдельных компонентов окружающей среды, так и комплексов. Для проверки генетических эффектов факторов окружающей среды мы использовали традиционный тест
Известия Национальной академии наук Республики Казахстан
Меллер-5 (Basc) на Drosophilamelanogaster. С помощью этой тест-ситемы мы проанализировали генети- ческие эффекты α-излучения, которое образуется при радиоактивном распаде дочерних продуктов радона.
Данная тест-система в классической генетике использовалась для детекции мутаций с автономным прояв- лением. В настоящее время ее применяют и для обнаружения условных мутаций с неавтономным проявле- нием, которые формируют особые признаки, относящиеся к инвариантной части видового облика живого организма. Самое яркое свойство условных мутаций – это образование морфозов. В наших исследованиях морфозы проявились во втором поколении и были обусловлены наличием условных мутаций у родителей, взятых из первого поколения (F1). Первичным индуктором возникновения условных мутаций являлось ионизирующее α-излучение, а в следующем поколении их дополняли генетические особенности родителей – это инверсии. Обнаруженные морфозы составили характерную группу уродств: черные пятна на теле (или меланомы); закрученные, изогнутые, или нерасправленные крылья; белые пятна на теле, пузыри на крыльях, безодного крыла, с деформацией головы, глаз, торакса и брюшка, мутации стерильности. Стерильность проверялась в нескольких поколениях мух. Характерной чертой всех морфозов является ассиметрия и определяется она как генетически не стабильная вариация индивидуального морфогенеза, связанная с изме- нениями окружающей среды. Статистичекий анализ данных эксперимента в тест-системе Меллер-5 (Basc) показала, что α-излучение обладает мутагенным эффектом с вероятностью не менее 95%.
Ключевые слова: радон, эманация, α-излучение, инверсия, Basc, дрозофила, морфозы.