ONE AND TWO WEIGHT ESTIMATES
FOR ONESIDED OPERATORS IN
L p( · ) SPACES
V. Kokilashvili, A. Meskhi, M. Sarwar
Communiated by R. Oinarov
Keywords and phrases: one-sided maximal funtions, one-sided potentials, one-
weightinequality,two-weight inequality, trae inequality.
Mathematis Subjet Classiation: 26A33, 42B25,46E30.
Abstrat. Various type weighted norm estimates for one-sided maximal funtions
and potentials are established in variable exponent Lebesgue spaes
L p( · )
. Inpartiular, suient onditions (in some ases neessary and suient onditions)
governing one and two weight inequalities for these operators are derived. Among
other results generalizations of the HardyLittlewood, FeermanStein and trae
inequalitiesare given in
L p( · )
spaes.1 Introdution
This paper deals with the boundedness of one-sided maximal funtions and
potentials in weighted Lebesgue spaes with variable exponent. In partiular, we
derive one-weight inequality for one-sided maximal funtions; suient onditions
(insomeasesneessary andsuientonditions)governingtwo-weightinequalities
for one-sided maximal and potential operators; riteria for the trae inequality
for one-sided frational maximal funtions and potentials; FeermanStein type
inequality for one-sided frational maximal funtions; generalizationof the Hardy-
Littlewood theorem for the RiemannLiouville and Weyl transforms. It is worth
mentioning that some results of this paper implies the following fat: the one-
weight inequality for one-sided maximal funtions automatially holds when both
the exponent of the spae and the weight are monotoni funtions.
The boundedness of one-sided integral operators in
L p( · )
spaes was proved in[13℄.Inthatpapertheauthorsestablishedtheboundednessofthe one-sidedHardy
Littlewood maximal funtions, potentials and singular integrals in
L p( · ) (I)
spaeswith the ondition on
p
whih is weaker than the log-Holder ontinuity (weakLipshitz) ondition.
Solutionof theone-weight problemforone-sided operatorsinlassialLebesgue
spaeswas given in[48℄, [1℄. Trae inequalitiesfor one-sided potentialsin
L p
spaeswereharaterizedin[38℄,[40℄,[22℄.Itshouldbeemphasizedthataompletesolution
of the two-weight problem with transparent integral onditions on weights for one-
sided maximal funtions and potentials in the non-diagonal ase are given in the
monographs [16, Chapters 2 and 3℄, [9, Chapter 2℄. For Sawyer-type two-weight
riteriafor one-sided frational operators werefer to[35℄, [36℄,[34℄.
Weightedinequalitiesfor lassialintegral operatorsin
L p( · )
spaes were derivedin[6℄, [8℄, [10℄[14℄, [19℄, [23℄[32℄, [45℄, [47℄,et (see also[21℄, [44℄).
The one-weight problemfor the two-sided HardyLittlewood maximal operator
in
L p( · )
spaes was solved in [7℄. Earlier, some generalizations of the Mukenhoupt ondition inthese spaes dened onbounded sets were disussed in[30℄ and [31℄.Criteriafor the boundednessof two-sided frationalmaximaloperators from
L p w
to
L q( v · )
were given in [24℄. Two-weight Sawyer type riteria for two-sided maximalfuntions onthe real linewere announed in[23℄,[25℄.
In[2℄neessaryandsuientonditionsonaweight
v
governingtheboundedness ompatnessofthegeneralizedRiemannLiouvilletransformR α( · )
fromL p( · ) ( R + )
toL q( v · ) ( R + )
,α − > 1/p −
,were derived.In Setion 1 we give the denition and some essential well-known properties
of the Lebesgue spae with variable exponent and formulate CarlesonHormander
typeinequalities.InSetion2westudytheone-weightproblemforone-sidedHardy
Littlewoodmaximaloperatorsin
L p( · )
spaes,whileSetion3isdevotedtothe sameproblemforone-sided frationalmaximalfuntions.InSetion4wederivesuient
(in some ases neessary and suient) onditions guaranteeing two-weight
p( · )
q( · )
norm estimates for one-sided frational maximal operators. FeermanStein type inequalities in variable exponent spaes are disussed in Setion 5. In Setion6 we established riteria governing the trae inequality for the RiemannLiouville
and Weyl operators in
L p( · )
spaes. In Setion 7 we formulate generalization of the HardyLittlewood theorem for one-sided potentials in these spaes. Setion 8 isdediated totwo-weight inequalitiesfor one-sided operators.
Finally,wepointout that onstants(often dierent onstants inthe same series
of inequalities)willgenerally be denoted by
c
orC
.2 Preliminaries
Let
Ω
be anopen set inR n
and letp
be ameasurable funtion onΩ
. Suppose that1 ≤ p − ≤ p + < ∞ , (1)
where
p −
andp +
aretheinmumandthesupremumrespetivelyofp
onΩ
.Supposethat
ρ
is a weight funtion onΩ
, i.e.ρ
is an almost everywhere positive loallyintegrable funtion on
Ω
. We say that a measurable funtionf
onΩ
belongs toL p( ρ · ) (Ω)
(orL p(x) ρ (Ω)
) ifS p,ρ (f ) = Z
Ω
f (x)ρ(x) p(x) dx < ∞ .
It is known that (see, e.g., [33℄, [26℄, [28℄, [42℄)
L p( ρ · ) (Ω)
is a Banah spae withthe norm
k f k L p(·) ρ (Ω) = inf
λ > 0 : S p( · ),ρ f /λ
≤ 1 .
If
ρ ≡ 1
, then we use the symbolL p( · ) (Ω)
(resp.S p
) instead ofL p( ρ · ) (Ω)
(resp.S p( · ),ρ
). It is lear thatk f k L p(·) ρ (Ω) = k f ρ k L p(·) (Ω)
. It should be also emphasized thatwhen
p
is onstant, thenL p( ρ · ) (Ω)
oinides with the lassial weighted Lebesguespae.
Further, wedenote
p − (E) := inf
E p; p + (E) := sup
E
p, E ⊂ Ω, p − (Ω) = p − ; p + (Ω) = p + .
The followingstatement is well-known (see, e.g., [33℄, [42℄):
PropositionA.Let
E
be a measurable subsetofΩ
. Then thefollowinginequalities hold:k f k r L + r(·) (E) (E) ≤ S r( · ) (f χ E ) ≤ k f k r L − r(·) (E) (E) , k f k L r(·) (E) ≤ 1;
k f k r L − r(·) (E) (E) ≤ S r( · ) (f χ E ) ≤ k f k r L + r(·) (E) (E) , k f k L r(·) (E) ≥ 1;
Z
E
f (x)g(x)dx ≤ 1
r − (E) + 1 (r + (E)) ′
k f k L r(·) (E) k g k L r ′ (·) (E) ,
where
r ′ (x) = r(x) r(x) − 1
and1 < r − ≤ r + < ∞ .
Let
I
bean open set inR
. In the sequel we shall use the notation:I + (x, h) := [x, x + h] ∩ I, I − (x, h) := [x − h, x] ∩ I;
I (x, h) := [x − h, x + h] ∩ I.
Weintrodue the following onesided maximaloperators:
M α( · ) f
(x) = sup
h>0
1 (2h) 1 − α(x)
Z
I(x,h)
| f (t) | dt,
M α( − · ) f
(x) = sup
h>0
1 h 1 − α(x)
Z
I − (x,h)
| f (t) | dt,
M α( + · ) f
(x) = sup
h>0
1 h 1 − α(x)
Z
I + (x,h)
| f (t) | dt,
where
0 < α − ≤ α + < 1
,I
isanopen set inR
andx ∈ I
.If
α ≡ 1
, thenM α( · )
,M α( − · )
andM α( + · )
are the onesided HardyLittlewood maximaloperators whihare denoted byM
,M −
andM +
respetively.In [4℄L. Diening proved the followingstatement:
Theorem A. Let
Ω
be a bounded open set inR n .
Thenthe maximal operator(M Ω f
(x) = sup
r>0
1 r n
Z
B(x,r) T Ω
| f (y) | dy, x ∈ Ω,
is bounded in
L p( · ) (Ω)
ifp ∈ P (Ω)
, that is,a) 1 < p − ≤ p(x) ≤ p + < ∞ ;
b) p
satisestheDiniLipshitz(log-Holderontinuity)ondition(p ∈ DL(Ω))
:there exists a positive onstant
A
suh that for allx, y ∈ Ω
with0 < | x − y | ≤ 1 2
theinequality
p(x) − p(y) ≤ A
ln | x − 1 y | (2)
holds.
The next statementwas proved in [3℄.
Theorem B.Let
Ω
be an open subsetofR n
. Suppose that1 < p − ≤ p + < ∞
. Thenthe maximal operator
M Ω
is bounded inL p( · ) (Ω)
if(i)
p ∈ P (Ω)
;(ii)
| p(x) − p(y) | ≤ C
ln(e + | x | ) (3)
for all
x, y ∈ Ω
,| y | ≥ | x | .
We shall alsoneed the followingstatements:
Proposition B ([33℄, [42℄). Let
1 ≤ p(x) ≤ q(x) ≤ q + < ∞
. Suppose thatΩ
is anopen set in
R n
with| Ω | < ∞
. Thenthe inequalityk f k L p(·) (Ω) ≤ (1 + | Ω | ) k f k L q(·) (Ω)
holds.
PropositionC([4℄).Let
Ω
beanopensetinR n
andletp
andq
beboundedexponentson
Ω
. ThenL q( · ) (Ω) ֒ → L p( · ) (Ω)
ifandonlyif
p(x) ≤ q(x)
almosteverywhereonΩ
andthereisaonstant0 < K < 1
suh that
Z
Ω
K p(x)q(x)/( | q(x) − p(x) | ) dx < ∞ . (4)
Remark A. In the previous statement itis used the onvention
K 1/0 := 0
.Denition A ([13℄). Let
P − (I)
be the lass of all measurable positive funtionsp : I → R
satisfyingthe followingondition: there existapositiveonstantC 1
suhthat for a.e
x ∈ I
and a.ey ∈ I
with0 < x − y ≤ 1 2
the inequalityp(x) ≤ p(y) + C 1
ln
1 x − y
(5)
holds.Further,wesaythat
p
belongstoP + (I )
ifp
ispositivefuntiononI
andthereexistsapositiveonstant
C 2
suhthatfora.ex ∈ I
anda.ey ∈ I
with0 < y − x ≤ 1 2
the inequality
p(x) ≤ p(y) + C 2
ln
1 y − x
(6)
isfullled.
DenitionB.Wesaythatameasurablepositivefuntionon
I
belongstothelassP ∞ (I )
(p ∈ P ∞ (I)
)if (3) holds forallx, y ∈ I
with| y | ≥ | x | .
.Weshall also needthe following denition:
Denition C. Let
p
be a measurable funtion on unbounded intervalI
inR
. We say thatp ∈ G (I)
if there is aonstant0 < K < 1
suh thatZ
I
K p(x)p − /(p(x) − p − ) dx < ∞ .
Theorem C ([13℄). Let
I
be a bounded interval inR
. Suppose that1 < p − ≤ p + <
∞
. Then(i)
ifp ∈ P − (I)
, thenM −
is bounded inL p( · ) (I)
;(ii)
ifp ∈ P + (I )
, thenM +
is bounded inL p( · ) (I)
.In the ase of unbounded set wehave
TheoremD([13℄).Let
I
beanarbitraryopensetinR
.Supposethat1 < p − ≤ p + <
∞
. Ifp ∈ P + (I ) ∩ P ∞ (I)
, then the operatorM +
is bounded inL p( · ) (I)
. Further, ifp ∈ P − (I ) ∩ P ∞ (I)
. Thenthe operatorM −
is bounded inL p( · ) (I)
In partiular, the previous statementyields
Theorem E ([13℄).Let
I = R +
and let1 < p − ≤ p + < ∞
. Suppose thatp ∈ P + (I)
and there is a positive number
a
suh thatp ∈ P ∞ ((a, ∞ ))
. ThenM +
is boundedin
L p( · ) (I)
. Further, ifp ∈ P − (I)
and there is a positive numbera
suh thatp ∈ P ∞ ((a, ∞ ))
, thenM −
is bounded inL p( · ) (I)
.Thenext statementgivesoneweightriteriaforone-sidedmaximaloperatorsin
lassialLebesgue spaes (see [48℄, [1℄).
Theorem F ([1℄). Let
I ⊆ R
be an interval. Assume that0 ≤ α < 1
and1 < p <
1/α
, wherep
andα
are onstants(1/α = ∞
ifα = 0)
. We set1/q = 1/p − α
.(i)
LetT := M α −
. Thenthe inequalityZ
I | T f (x) | q v(x)dx 1/q
≤ C Z
I | f (x) | p v p/q (x)dx 1/p
(7)
holds if and only if
sup
h>0
1 h
Z
I + (x,x+h)
v (t)dt 1 q
1 h
Z
I − (x − h,x)
v − p ′ /q (t)dt p 1 ′
< ∞ . (8)
(ii)
LetT := M α +
. Then(7)
holds if and only ifsup
h>0
1 h
Z
I − (x − h,x)
v(t)dt 1 q
1 h
Z
I + (x,x+h)
v − p ′ /q (t)dt p 1 ′
< ∞ . (9)
Denition D. Let
I ⊆ R +
be an interval. Suppose that1 < p < q < ∞
, wherep
and
q
are onstants.Wesay that the weightv ∈ A − p,q (I) (
resp.v ∈ A + p,q (I) )
if(8) (
resp.
(9))
holds.If
p = q
,thenwedenotethelassA + p,q (I ) (
resp.A − p,q (I) )
byA + p (I ) (
resp.A − p (I)
).Notie that
v ∈ A + p,q (I)
(resp.v ∈ A − p,q (I)
) is equivalent to the onditionv ∈ A + 1+q/p ′ (I)
(resp.v ∈ A − 1+q/p ′ (I )
).Further, we denoteby
D( R )
(resp.D( R + )
) a dyadi lattie inR
(resp. inR +
).Denition E. We say that a measure
µ
belongs to the lassRD (d) ( R n )
(dyadireverse doublingondition) if there exists a onstant
δ > 1
, suh that for alldyadiubes
Q
andQ ′
,Q ⊂ Q ′
,| Q | = | Q 2 n ′ | ,
the inequalityµ(Q ′ ) ≥ δµ(Q)
holds.
Denition F. We say that measure
µ
onR n
satises the doublingondition (µ ∈ DC( R n )
) if there isa positive numberb
suh thatµB(x, 2r) ≤ bµB (x, r)
for all
x ∈ R n
andr > 0.
It is known (see [51℄, p. 11) that if
µ ∈ DC( R n )
, thenµ ∈ RD( R n )
, i.e., thereare positiveonstants
η 1
andη 2
,0 < η 1 , η 2 < 1
, suh thatµB(x, η 1 r) ≤ η 2 µB(x, r),
for all
x ∈ R n
andr > 0.
It is easy tohek that if
µ ∈ DC( R n )
, thenµ ∈ RD (d) ( R )
.We shall need some lemmasgivingCarleson-Hormandar type inequalities.
Lemma 2.1 ([52℄). Let
1 < p ≤ r < ∞
and letρ − p ′ ∈ RD (d) ( R n ),
whereρ
is aweight funtion on
R n
. Then there is a positive onstantC
suh that for all non-negative
f
the inequalityX
Q ∈ D( R n )
Z
Q
ρ − p ′ (x)dx
− p r ′ Z
Q
f (y)dy r
≤ C Z
R n
(f(x)ρ(x)) p dx 1 p
holds.
Lemma 2.2 ([50℄, [53℄). Let
u(x) ≥ 0
onR n ; { Q i } i ∈ A
is a ountable olletion ofdyadi ubes in
R n
and{ a i } i ∈ A , { b i } i ∈ A
be positive numbers satisfying(i)
Z
Q i
u(x)dx ≤ Ca i
for alli ∈ A;
(ii) X
j: Q j ⊂ Q i
b j ≤ Ca i
for alli ∈ A.
Then
X
i ∈ I
b i
1 a i
Z
Q i
g(x)u(x)dx p 1 p
≤ C p
Z
R n
g p (x)u(x)dx p 1
for all
g ≥ 0
onR n
and1 < p < ∞
.3 HardyLittlewood one-sided maximal funtions. One-
weight problem
Inthissetionwedisusstheone-weightproblemfortheone-sidedHardyLittlewood
maximaloperators.
Webegin with the following statement:
Lemma 3.1 ([13℄). Let
I
be a boundedinterval and let(1)
holdonI
. Ifp ∈ P + (I)
,thenthereisa positiveonstantdependingonlyon
p
suhthatforallf
,k f k L p(·) (I) ≤ 1
, the inequalityM + f (x) p(x)
≤ C 1 + M + | f | p( · ) (x)
holds.
Now we formulate the main results of this setion.
Theorem 3.1. Let
I
be a bounded interval inR
and let1 < p − ≤ p + < ∞
.(i)
Ifp ∈ P + (I)
and aweightfuntionw
satisestheonditionw( · ) p( · ) ∈ A + p − (I)
,then for all
f ∈ L p( w · ) (I)
the inequalityk (Nf)w k L p(·) (I) ≤ C k wf k L p(·) (I) (12)
holds, where
N = M +
.(ii)
Letp ∈ P − (I)
and letw( · ) p( · ) ∈ A − p − (I)
. Then inequality(12)
holds for allf ∈ L p( w · ) (I)
, whereN = M −
.The result similar to Theorem 3.1 has been derived in [30℄, [31℄ for
M Ω
, whereΩ ⊂ R n
isa bounded domain.In the ase of unbounded intervalswe have the next statement:
Theorem 3.2. Let
I = R +
and let1 < p − ≤ p + < ∞
. Suppose that there is apositive number
a
suh thatp(x) ≡ p c ≡ const
outside(0, a)
.(i)
Ifp ∈ P + (I)
andw( · ) p( · ) ∈ A + p − (I)
, then(12)
holds forN = M +
.(ii)
Ifp ∈ P − (I)
andw( · ) p( · ) ∈ A − p − (I)
, then(12)
holds forN = M −
.Theorem 3.1 yieldsthe followingorollaries:
Corollary 3.1. Let
p
be inreasing funtion on an intervalI = (a, b)
suh that1 < p(a) ≤ p(b) < ∞
. Suppose thatw
isinreasing positive funtiononI
. Thentheoneweight inequality
k w 1/p( · ) (M + f )( · ) k L p(·) (I) ≤ c k w 1/p( · ) f ( · ) k L p(·) (I)
holds.
Corollary 3.2. Let
p
be dereasing funtion on an intervalI = (a, b)
suh that1 < p(b) ≤ p(a) < ∞
. Suppose thatw
is dereasingpositive funtion onI
. Thentheoneweight inequality
k w 1/p( · ) (M − f )( · ) k L p(·) (I) ≤ c k w 1/p( · ) f ( · ) k L p(·) (I)
holds.
Nowwe proveTheorems 3.1and 3.2.
Proof of Theorem 3.1. Sine the proof of the seond part is similar to the rst
one, we prove only
(i)
. It is enoughtoshow thatS p wM + (f /w)
≤ C
for
f
satisfyingthe onditionk f k L p(·) (I) ≤ 1
.First we prove that
S p ∗ f w
< ∞
,wherep ∗ (x) = p(x) p − ·
By using Holder's inequality we nd that
S p ∗
f w
= Z
I
[f /w] p ∗ (x) (x)dx ≤ Z
I | f(x) | p(x) dx p 1
− ·
Z
I
w(x) p(x)(1 − (p − ) ′ ) dx 1 ´
(p − ) ′
< ∞ ,
beause
w p( · ) ( · ) ∈ A + p − (I)
.Thus Lemma3.1 might be appliedfor
p ∗
. Consequently,S p w(M + f /w)
= Z
I
M +
f w
(x)
p(x)
w p(x) (x)dx
= Z
I
M + (f /w) (x) p ∗ (x) p −
w p(x) (x)dx
≤ C Z
I
1 + M + f w p
∗ ( · ) (x)
p −
(w(x)) p(x) dx
≤ C Z
I
(w(x)) p(x) dx + C Z
I
M + f w p
∗ ( · ) (x)
p −
w p(x) (x)dx
≤ C + C Z
I
f /w p(x) w p(x) (x)dx ≤ C.
Proof of Theorem 3.2. First we prove
(i)
. Without loss of generality we anassume that
M + f(a) < ∞
. SineM +
is sub-linear operator it is enough to provethat
S p,w (M + f ) < ∞
, wheneverS p,w (f) < ∞ .
WehaveZ
R +
M + f p(x)
(x)w(x) p(x) dx ≤ c Z a
0
M + f χ [0,a] p(x)
(x)w(x) p(x) dx
+ Z a
0
M + (f χ [a, ∞ ) ) p(x)
(x)w(x) p(x) dx + Z ∞
a
M + (f χ [0,a] ) p(x)
(x)w(x) p(x) dx +
Z ∞
a
M + f χ [a, ∞ )
p(x)
(x)w(x) p(x) dx
= c[I 1 + I 2 + I 3 + I 4 ].
Sine
M + f (x) = M + (f χ [0,a] )(x)
forx ∈ [0, a]
, using the assumptionsw( · ) p( · ) ∈ A + p − ([0, a])
,p + ∈ P + ((0, a))
and Theorem 3.1wend thatI 1 < ∞
.Further, the ondition
w( · ) p( · ) ∈ A + p − (I)
implies thatw( · ) p( · ) ∈ A + p − ((a, ∞ ))
.Consequently, sine
p ≡ p c ≡
onst on(a, ∞ )
,by Theorem Fwe haveI 4 < ∞ .
Now observe that
M + (f χ [0,a] )(x) = 0
whenx ∈ (a, ∞ )
. ThereforeI 3 = 0
.It remainsto estimate
I 2
. Forthis notie that ifx ∈ (0, a)
,thenM + f · χ [a, ∞ )
(x) = sup
h>0
1 h
Z x+h
x | f(y) | χ [a, ∞ ) (y)dy
= sup
h>a − x
1 h
Z x+h
a | f (y) | χ [a, ∞ ) (y)dy
≤ sup
h>a − x
1 x + h − a
Z a+(x+h − a)
a | f(y) | χ [a, ∞ ) (y)dy ≤ M + f (a) < ∞ .
Hene,
I 2 ≤ c Z a
0
w(x) p(x) dx < ∞
beause
w( · ) p( · )
isloallyintegrableonR +
.To prove
(ii)
we use the notationof the proof of(i)
substitutingM +
byM +
.Infat,the proof is similar tothat of
(i)
.The only diereneis in the estimates ofI 2 :=
Z a 0
M − (f χ [a, ∞ ) ) p(x)
(x)w(x) p(x) dx
and
I 3 :=
Z ∞
a
M − (f · χ [0,a] )(x) p(x)
(x)w(x) p(x) dx.
Obviously, we have that
I 2 = 0
.Further, we representI 3
as follows:I 3 = Z ∞
a
M − (f · χ [0,a] )(x) p c
(x)w(x) p c dx
= Z 2a
a
M − (f · χ [0,a] )(x) p c
(x)w(x) p c dx +
Z ∞
2a
M − (f · χ [0,a] )(x) p c
(x)w(x) p c dx := I 3 (1) + I 3 (2) .
Observe that for
x ∈ (a, 2a]
,M − (f · χ [0,a] )(x) ≤ sup
x − a<h<x
1 a − x + h
Z a
a − (a − x+h) | f (y) | dy ≤ M − f (a) < ∞ .
Hene,
I 3 (1) ≤ (M − f) p c (a) Z 2a
a
(w(x)) p c dx < ∞ .
If
x > 2a
, thenM − f
(x) ≤ 1 a − x
Z a
0 | f (y) | dy.
Therefore by using Holder's inequality with respet to the exponent
p( · )
(seepropositionA) we nd that
I 3 (2) ≤ Z ∞
2a
(w(x)) p c (a − x) − p c dx
Z a
0 | f (x) | dx p c
≤ c Z ∞
2a
(w(x)) p c (a − x) − p c dx
k f w k p L c p(·) ([0,a])
k w − 1 k p c
L p ([0,a]) ′ (·)
:= cJ 1 · J 2 · J 3 .
It is lear that
J 2 < ∞
. Further, sinew( · ) p( · ) ∈ A − p − (a, ∞ )
, by Holder's
inequalitywe have that
w( · ) p( · ) ∈ A − p c (a, ∞ )
beause
p c ≥ p −
. Hene, by applyingTheorem F(for
α = 0
)wehave thatthe operatorM − f := M − (f χ (a, ∞ ) )
isboundedin
L p w c ((a, ∞ ))
.Consequently, the HardyoperatorH a f(x) = 1 x − a
Z x
a | f(t) | dt, x ∈ (a, ∞ ),
is bounded in
L p w c ((a, ∞ ))
. This implies(see, e.g., [20℄, [37℄) thatJ 1 < ∞
.It remains tosee that
J 3 < ∞
. Indeed, Proposition B yieldsk w − 1 k L p ′ (·)
([0,a]) ≤ (1 + a) k w − 1 k L (p − )′· ([0,a])
≤ c k χ { w −1 ≥ 1 } ( · )w − 1 ( · ) k L (p − ) ′ (·) ([0,a]) + k χ { w −1 <1 } ( · )w − 1 ( · ) k L (p − ) ′
([0,a])
≤ c χ { w −1 ≥ 1 } ( · )w −
p(·) p − (x)
L (p − ) ′ ([0,a]) + c
≤ c Z a
0
w p(x)(1 − (p − ) ′ ) (x)dx
1/(p − ) ′
+ c.
Thus
I 3 (2) < ∞
.4 Frational maximal operators. One-weight problem
In this setionwe derivethe one-weight inequality forone-sided frational maximal
operators.Our main results are the following statements:
Theorem 4.1. Let
I
be a bounded interval andlet1 < p − ≤ p + < ∞ .
Suppose thatα
is onstant satisfying0 < α < 1/p +
. Letq(x) = 1 − p(x) αp(x)
.(i)
Ifp ∈ P + (I )
and a weightw
satises the onditionw( · ) q( · ) ∈ A + p − ,q − (I)
, thenthe inequality
k (N α f )w k L q(·) (I) ≤ C k wf k L p(·) (I) , f ∈ L p( w · ) (I) (10)
holds for
N α = M α +
.(ii)
Letp ∈ P − (I)
and letw( · ) q( · ) ∈ A − p − ,q − (I)
. Then inequality(13)
holds forN α = M α −
.Theorem 4.2. Let
I = R +
,1 < p − ≤ p + < ∞
and letp(x) ≡ p c ≡
onst outsidesome interval
(0, a)
. Suppose thatq(x) = 1 − p(x) αp(x)
, whereα
is onstant satisfying0 < α < 1/p +
.(i)
Ifp ∈ P + (I)
andw( · ) q( · ) ∈ A + p − ,q − (I)
, then(10)
holds forN α = M α +
.(ii)
Ifp ∈ P − (I)
andw( · ) q( · ) ∈ A − p − ,q − (I)
, then(10)
holds forN α = M α −
.Proof of Theorem 4.1. We prove
(i)
. The proof of(ii)
isthe same. Firstwe showthat the inequality
M α + (f /w)(x) ≤ M + f p( · )/s( · ) w − q( · )/s( · )
(x) s(x)/q(x) Z
I
f p(y) (y)dy α
,
holds,where
s(x) = 1 + q(x)/p ′ (x)
.Indeed, denoting
g( · ) := (f ( · )) p( · )/s( · ) (w( · )) − q( · )/s( · )
we see thatf ( · )/w( · ) = (g( · )) s( · )/p( · ) w q( · )/p( · ) − 1 = (g( · )) 1 − α g s( · )/p( · )+α − 1 w αq( · )
. By using Holder's inequalitywith respet to the exponent
(1 − α) − 1
and the fats thats( · )/q( · ) = 1 − α
,(s(y)/p(y) + α − 1)/α = s( · )
we have1 h 1 − α
Z
I + (x,x+h)
f (y) w(y) dy
≤ 1
h Z
I + (x,x+h)
g(y)dy
1 − α Z
I + (x,x+h)
g (s(y)/p(y)+α − 1)/α (y)w q(y) (y)dy α
≤ M + g(x) s(x)/q(x) Z
I + (x,x+h)
g s(y) (y)w q(y) (y) α
≤ M + g (x) s(x)/q(x) Z
I
f p(y) (y)dy α
.
Now we prove that
S q wM α + (f /w)
≤ C
whenS p (f) ≤ 1
. By applying theabovederived inequalitywend that
S q wM α + (f /w)
≤ c Z
I
M α + (f p( · )/s( · ) w − q( · )/s( · ) ) s(x)
(x)w q(x) (x)dx
= cS s M + (f p( · )/s( · ) w − q( · )/s( · ) )w q( · )/s( · ) .
Observenowthat theondition onthe weight
w
isequivalenttothe assumptionw q( · ) ( · ) ∈ A + s − (I)
. On the other hand,k f p( · )/s( · ) k L s(·) (I) ≤ 1
. Therefore takingTheorem 3.1intoaount we have the desired result.
Proof of Theorem 4.2. (i) Let
f ≥ 0
and letS p,w (f ) < ∞
. WehaveS q,w (M α + f ) =
Z
I
M α + f q(x)
(x)w(x) q(x) dx
≤ c Z a
0
M α + f χ [0,a] (x) q(x)
(x)w(x) q(x) dx +
Z a 0
M α + (f · χ [a, ∞ ) )(x) q(x)
(x)w(x) q(x) dx +
Z ∞
a
M α + (f · χ [0,a] )(x) q(x)
(x)w(x) q(x) dx +
Z ∞
a
M α + (f χ [a, ∞ ) )(x) q(x)
(x)w(x) q(x) dx
:= c[I 1 + I 2 + I 3 + I 4 ].
Itiseasytoseethat
I 1 < ∞
beauseofTheorem4.1andthe onditionw q( · ) ( · ) ∈ A + p − ,q − ([0, a])
. Further, it is obvious thatI 3 < ∞
beauseM α + (f χ [0,a] )(x) = 0
forx > a
.Further,observethatI 2 ≤ c Z a
0
w(x) q(x) dx < ∞ ,
where the positive onstant depends on
α
,f
,p
,a
.It is easy tohek that by Holder's inequality with respet to the power
(p c ) ′ /q c
/ (p − ) ′ /q −
theondition
w( · ) q c ∈ A + p − ,q − ([a, ∞ ))
impliesw( · ) q c ∈ A + p c ,q c ([a, ∞ ))
.Hene,byusingTheorem Fwe nd that
I 4 < ∞
.(ii)
Wekeepthe notationof theproofof (i)but substituteM α +
byM α −
.Theonlydierenebetween the proofs of
(i)
and(ii)
is inthe estimates ofI 2
andI 3
.It is obviousthat
I 2 = 0
,while forI 3
we haveI 3 = Z 2a
a
M α − (f · χ [0,a] )(x) q(x)
(x)w(x) q(x) dx +
Z ∞
2a
M α − (f · χ [0,a] )(x) q c
(x)w(x) q c dx := I 3 (1) + I 3 (2) .
If
x > a
, thenM α − f (x) ≤ sup
x − a<h<x
h α − 1 Z a
x − h | f(y) | dy ≤ cM α − f (a).
Consequently,
I 3 (1) ≤ c M α − f (a) q c
Z 2a a
w(x) q c
dx < ∞ .
Now observe that when
x > a
we havethe following pointwise estimates:M α − (f χ [0,a]) )(x) ≤ (x − a) α − 1 Z a
0 | f (y) | dy ≤ (x − a) α − 1 k f w k L p(·) ([0,a]) k w − 1 k L p ′ (·) ([0,a])
:= (x − a) α − 1 J 1 · J 2 .
Hene,
I 3 (2) ≤
Z ∞
2a
(x − a) (α − 1)q c (w(x)) q c dx
(J 1 · J 2 ) q c .
It is obviousthat
J 1 < ∞
.Further,J 2 ≤ k w − 1 ( · )χ w −1 >1 ( · ) k L p ′ (·) ([0,a]) + k w − 1 ( · )χ w −1 ≤ 1 ( · ) k L p ′ (·) ([0,a])
:= J 2 (1) + J 2 (2) .
Itislearthat
J 2 (2) < ∞
.ToestimateJ 2 (1)
observethatbyPropositionBwehaveJ 2 (1) ≤ (1 + a) k w − 1 χ w −1 >1 k L p − ([0,a]) ≤ (1 + a) k w − q( · )/q − χ w −1 >1 k L p − ([0,a])
≤ (1 + a) k w − q( · )/q − k L p − ([0,a]) < ∞ .
Sine
M α −
is bounded fromL p w c ([a, ∞ ))
toL q w c ([a, ∞ ))
we have the Hardyinequality
Z ∞
a
(x − a) (α − 1)q c w q c (x) Z x
a | f (t) | dt q c
dx 1/q c
≤ c Z ∞
a | f(x) | p c w p c (x)dx 1/p c
.
From this inequality itfollows that (see, e.g., [20℄, [37℄)
Z ∞
2a
(x − a) (α − 1)q c (w(x)) q c dx < ∞ .
5 Generalized frational maximal operators. Two-weight
problem
Let
I = [a, b]
be a bounded interval and letI + := [b, 2b − a); I − := [2a − b, a).
Let
Q = I 1 × I 2 × · · · × I n
be a ube inR n .
We denote:Q + := I 1 + × I 2 + × · · · × I n + , Q − := I 1 − × I 2 − × · · · × I n − .
Let
α
be a measurable funtion onR n , 0 < α − ≤ α(x) ≤ α + < n.
Letus denedyadi frational maximal funtionson
R n
:M α( +,(d) · ) f
(x) = sup
Q∋x Q∈D( Rn )
1
| Q | 1 − α(x) n Z
Q +
| f (y) | dy;
M α( − ,(d) · ) f
(x) = sup
Q∋x Q∈D( Rn )
1
| Q | 1 − α(x) n Z
Q −
| f (y) | dy.
If
α(x) ≡ 0
, then we have Hardy-Littlewood dyadi maximal funtionsM +,(d)
,M − ,(d)
.Inthe paper[39℄the two-weightweak-typeinequalitywasproved inthelassial
Lebesgue spaes for one-sided dyadi Hardy-Littlewood maximal funtions dened
on
R n
.Theorem 5.1. Let
p
be onstant and let1 < p < q − ≤ q + < ∞
,0 < α − ≤ α + < n
where
q
andα
are measurable funtions onR n
. Suppose thatw − p ′ ∈ RD (d) ( R n ).
Then
M α( +,(d) · )
is bounded fromL p w ( R n )
toL q( v · ) ( R n )
if and only ifA := sup
Q,Q ∈ D( R n )
χ Q ( · ) | Q | α(·) n − 1 v( · )
L q(·) ( R n )
χ Q + w − 1
L p ′ ( R n ) < ∞ . (11)
Proof.Neessity.Assuming
f = χ Q + w − p ′
(Q ∈ D( R n )
) inthe inequalityM α( +,(d)
· ) f
L q(·) v ( R n ) ≤ C k f k L p w ( R n ) (12)
we have that
χ Q ( · )
1
| Q | 1 − α(x) n Z
Q +
f
L q(·) v ( R n )
= χ Q ( · ) | Q | α(·) n − 1
L q(·) v ( R n )
Z
Q +
w − p ′ (y)dy
≤ M α( +,(d) · ) f
L q(·) v ( R n ) ≤ C Z
Q +
w − p ′ (y)dy 1 p
.
Thus, to show that (11) holds it remains to prove that for all dyadi ubes Q,
S Q = R
Q
w − p ′ (y)dy < ∞ .
Indeed, suppose the ontrary thatS Q = ∞
for some ubeQ.Then
S Q = k w − 1 k L p ′ (Q) = ∞ .
This implies that there is anon-negative funtiong
suh thatg ∈ L p (Q)
andR
Q
g (y)w − 1 (y)dy = ∞ .
Further, letQ = ¯ Q + ,
whereQ ¯ ∈ D( R n ).
Thentakingf = χ Q gw − 1
we havek f k L p w ( R n ) = Z
Q ¯ +
g p (x)dx 1 p
< ∞ ;
M α( +,(d)
· ) f
L q(·) v ( R n ) ≥ χ Q ¯ ( · ) | Q ¯ | α(·) n − 1
L q(·) v ( R n )
Z
Q ¯ +
f (y)dy
= χ Q ¯ ( · ) | Q ¯ | α(·) n − 1
L q(·) v ( R n )
Z
Q ¯ +
g(y)w(y) − 1 dy = ∞ .
This ontradits (12).
Suieny. Forevery
x ∈ R n
we takeQ x ∈ D( R n )
(Q x ∋ x
) sothat| Q x | α(x) n − 1 Z
Q + x
| f (y) | dy > 1
2 M α( +,(d) · ) f
(x). (13)
Assume that
f
benon-negativebounded with ompat support. Then itis easy to see that we an take maximal ubeQ x
ontainingx
for whih (13) holds. LetQ ∈ D( R n )
and letus introdue the setF Q :=
x ∈ Q : Q
ismaximal for whih| Q | α(x) n − 1 Z
Q +
f(y)dy > 1
2 M α( +,(d) · ) f(x) .
Dyadi ubeshave the followingproperty:if
Q 1 , Q 2 ∈ D( R n ),
andQ o 1 T o Q 2 6 = ∅ ,
then
Q 1 ⊂ Q 2
orQ 2 ⊂ Q 1
, whereQ o
denotes the inner part of aubeQ
.Now observe that
F Q 1
T F Q 2 6 = ∅
ifQ 1 6 = Q 2
. Indeed, ifQ o 1 T o
Q 2 = ∅ ,
then it islear. If
Q o 1 T o
Q 2 6 = ∅ ,
thenQ 1 ⊂ Q 2
orQ 2 ⊂ Q 1 .
Letus takex ∈ F Q 1
T F Q 2 .
Thenx ∈ Q 1 , x ∈ Q 2
and1
| Q 1 | 1 − α(x) n Z
Q + 1
f (y)dy > 1 2
M α( +,(d) · ) f
(x); 1
| Q 2 | 1 − α(x) n Z
Q + 2
f (y)dy > 1 2
M α( +,(d) · ) f
(x).
If
Q 1 ⊂ Q 2
, thenQ 2
would be the maximal ube for whih (13) holds.Consequently
x 6∈ F Q 1
andx ∈ F Q 2 .
Analogously we have that ifQ 2 ⊂ Q 1 ,
thenx ∈ F Q 1
andx 6∈ F Q 2 .
Further, it is lear that
F Q ⊂ Q
andS
Q ∈ D m ( R n )
F Q = R n ,
whereD m ( R n ) = Q : Q ∈ D( R n ), F Q 6 = ∅ .
Suppose that
k f k L p w ( R n ) ≤ 1
and thatr
is a number satisfying the onditionp < r < q − .
We haveM α( +,(d) · ) f r
L q(·) v ( R n ) = v r M α( +,(d) · ) f r
L q(·) r ( R n ) = sup Z
R n
v r (x)
M α( +,(d) · ) f r
(x)h(x)dx,
wherethe supremum is taken overallfuntions
h
,k h k
L
q(·) r
′
( R n )
≤ 1.
Nowfor suhan
h
, using Lemma2.1, wehave thatZ
R n
v r (x)
M α( +,(d) · ) f r
(x)h(x)dx = X
Q ∈ D m ( R n )
Z
F Q
v r (x)
M α(x) +,(d) f r
(x)h(x)dx
≤ C X
Q ∈ D m ( R n )
Z
F Q
v r (x) | Q | ( α(x) n − 1)r h(x)dx Z
Q +
f(y)dy r
≤ C X
Q ∈ D m ( R n )
v r ( · ) | Q | ( α(·) n − 1)r χ Q ( · )
L q(·) r ( R n )
h
L
q(·) r
′
( R n )
Z
Q +
f(y)dy r
= C X
Q ∈ D m ( R n )
v( · ) | Q | α(·) n − 1 χ Q ( · ) r
L q(·) ( R n )
h
L
q(·) r
′
( R n )
Z
Q +
f(y)dy r
≤ C A r X
Q ∈ D m ( R n )
Z
Q +
w − p ′ (y)dy
− r p Z
Q +
f(y)dy r
≤ CA r k f k r L p w ( R n ) .
In the last inequality we used also the fat that
Q + ∈ D( R n )
if and only ifQ ∈ D( R n ).
Letuspassnowtoanarbitrary
f
,wheref ∈ L p w ( R n ).
Forsuhanf
wetakethesequene
f m = f χ Q(0,k m ) χ { f <j m }
,whereQ(0, k m ) := { (x 1 , · · · , x n ) : | x i | < k m , i = 1, · · · , n } .
and
k m , j m → ∞
asm → ∞
.Thenitiseasytosee thatf m → f
inL p w ( R n )
andalsopointwise. Moreover,
f m (x) ≤ f(x)
. On the other hand,M α( +,(d) · ) f m
is a Cauhysequene in
L q( v · ) ( R n ),
beauseM α( · ) f m − M α( · ) f j
L q(·) v ( R n ) ≤ M α( · ) f m − f j
L q(·) v ( R n ) ≤ C f m − f j
L p w ( R n ) .
Sine
L q( v · ) ( R n )
is aBanah spae, there existsg ∈ L q( v · ) ( R n )
suh thatM α f m
− g
L q(·) v ( R n ) → 0.
Taking PropositionA intoaount we an onlude that there is asubsequene
M α( · ) f m k
whih onverges tog
inL q( v · ) ( R n )
and also almost everywhere. Butf m k
onverges to
f
inL p w ( R n )
and almost everywhere. Consequently,k g k L q(·) v ( R n ) ≤ C k f k L p w ( R n ) , (14)
wherethe positiveonstant
C
doesnot depend onf
. Nowobservethat sinef m k
isnon-dereasing, for xed
x ∈ Q, Q ∈ D( R n )
,we have that| Q | α(x) n − 1 Z
Q +
f (y)dy = lim
k →∞ | Q | α(x) n − 1 Z
Q +
f m k (y)dy
≤ lim
k →∞ sup
Q ∋ x | Q | α(x) n − 1 Z
Q +
f m k (y)dy = lim
k →∞
M α( +,(d) · ) f m k
(x)
and the lastlimitexists beause itonverges to
g
almost everywhere. Hene,M α( +,(d) · ) f
(x) ≤ lim
k →∞
M α( +,(d) · ) f m k
(x) = g(x).
for almostevery
x.
Finally,(14) yieldsM α( +,(d)
· ) f
L q(·) v ( R n ) ≤ C k f k L p w ( R n ) .
The proofof thenext statement issimilartothat ofTheorem 4.1;therefore itis
omitted.
Theorem 5.2. Let
1 < p < q − ≤ q + < ∞ , 0 < α − ≤ α + < n
, wherep
is onstantand
q
,α
are measurable funtions onR n
. Suppose thatw − p ′ ∈ RD (d) ( R n ).
ThenM α( − ,(d) · )
is bounded from fromL p w ( R n )
toL q( v · ) ( R n )
if and only ifsup
Q,Q ∈ D( R n )
χ Q ( · ) | Q | α(·) n − 1 v ( · )
L q(·) ( R n )
w − 1 ( · )χ Q − ( · )
L p ′ ( R n ) < ∞ .
Let usnow onsider the ase when
p ≡ q ≡
onst.Theorem5.3. Let
1 < p < ∞
,wherep
isonstant.Supposethat0 < α − ≤ α + < n
.Then
M α( +,(d) · )
is bounded fromL p w ( R n )
toL p v ( R n )
if and only ifZ
R n
v p (x)
M α( +,(d) · ) w − p ′ χ Q (x)
p
dx ≤ C Z
Q
w − p ′ (x)dx < ∞ ,
for all dyadi ubes
Q ⊂ R n
.Proof. For suieny itis enough toshow that the inequality
v M α( +,(d) · ),u f
L p ( R n ) ≤ C u 1 p f
L p ( R n ) (15)
holds if for all
Q ∈ D( R n ), Z
R n
v p (x)
M α( +,(d) · ),u χ Q
p
(x) dx ≤ C Z
Q
| f (x) | p u(x) dx,
where
M α( +,(d) · ),u f
(x) = M α( +,(d) · ) f u (x).
To prove (15) we arguein the same manneras inthe proof of Theorem 4.1. Let
usonstrut the set