• Ешқандай Нәтиже Табылған Жоқ

LP(-)

N/A
N/A
Protected

Academic year: 2023

Share "LP(-)"

Copied!
38
0
0

Толық мәтін

(1)

ONE AND TWO WEIGHT ESTIMATES

FOR ONESIDED OPERATORS IN

L p( · )

SPACES

V. Kokilashvili, A. Meskhi, M. Sarwar

Communiated by R. Oinarov

Keywords and phrases: one-sided maximal funtions, one-sided potentials, one-

weightinequality,two-weight inequality, trae inequality.

Mathematis Subjet Classiation: 26A33, 42B25,46E30.

Abstrat. Various type weighted norm estimates for one-sided maximal funtions

and potentials are established in variable exponent Lebesgue spaes

L p( · )

. In

partiular, suient onditions (in some ases neessary and suient onditions)

governing one and two weight inequalities for these operators are derived. Among

other results generalizations of the HardyLittlewood, FeermanStein and trae

inequalitiesare given in

L p( · )

spaes.

1 Introdution

This paper deals with the boundedness of one-sided maximal funtions and

potentials in weighted Lebesgue spaes with variable exponent. In partiular, we

derive one-weight inequality for one-sided maximal funtions; suient onditions

(insomeasesneessary andsuientonditions)governingtwo-weightinequalities

for one-sided maximal and potential operators; riteria for the trae inequality

for one-sided frational maximal funtions and potentials; FeermanStein type

inequality for one-sided frational maximal funtions; generalizationof the Hardy-

Littlewood theorem for the RiemannLiouville and Weyl transforms. It is worth

mentioning that some results of this paper implies the following fat: the one-

weight inequality for one-sided maximal funtions automatially holds when both

the exponent of the spae and the weight are monotoni funtions.

The boundedness of one-sided integral operators in

L p( · )

spaes was proved in

[13℄.Inthatpapertheauthorsestablishedtheboundednessofthe one-sidedHardy

Littlewood maximal funtions, potentials and singular integrals in

L p( · ) (I)

spaes

with the ondition on

p

whih is weaker than the log-Holder ontinuity (weak

Lipshitz) ondition.

Solutionof theone-weight problemforone-sided operatorsinlassialLebesgue

spaeswas given in[48℄, [1℄. Trae inequalitiesfor one-sided potentialsin

L p

spaes

wereharaterizedin[38℄,[40℄,[22℄.Itshouldbeemphasizedthataompletesolution

of the two-weight problem with transparent integral onditions on weights for one-

sided maximal funtions and potentials in the non-diagonal ase are given in the

(2)

monographs [16, Chapters 2 and 3℄, [9, Chapter 2℄. For Sawyer-type two-weight

riteriafor one-sided frational operators werefer to[35℄, [36℄,[34℄.

Weightedinequalitiesfor lassialintegral operatorsin

L p( · )

spaes were derived

in[6℄, [8℄, [10℄[14℄, [19℄, [23℄[32℄, [45℄, [47℄,et (see also[21℄, [44℄).

The one-weight problemfor the two-sided HardyLittlewood maximal operator

in

L p( · )

spaes was solved in [7℄. Earlier, some generalizations of the Mukenhoupt ondition inthese spaes dened onbounded sets were disussed in[30℄ and [31℄.

Criteriafor the boundednessof two-sided frationalmaximaloperators from

L p w

to

L q( v · )

were given in [24℄. Two-weight Sawyer type riteria for two-sided maximal

funtions onthe real linewere announed in[23℄,[25℄.

In[2℄neessaryandsuientonditionsonaweight

v

governingtheboundedness ompatnessofthegeneralizedRiemannLiouvilletransform

R α( · )

from

L p( · ) ( R + )

to

L q( v · ) ( R + )

,

α > 1/p

,were derived.

In Setion 1 we give the denition and some essential well-known properties

of the Lebesgue spae with variable exponent and formulate CarlesonHormander

typeinequalities.InSetion2westudytheone-weightproblemforone-sidedHardy

Littlewoodmaximaloperatorsin

L p( · )

spaes,whileSetion3isdevotedtothe same

problemforone-sided frationalmaximalfuntions.InSetion4wederivesuient

(in some ases neessary and suient) onditions guaranteeing two-weight

p( · )

q( · )

norm estimates for one-sided frational maximal operators. FeermanStein type inequalities in variable exponent spaes are disussed in Setion 5. In Setion

6 we established riteria governing the trae inequality for the RiemannLiouville

and Weyl operators in

L p( · )

spaes. In Setion 7 we formulate generalization of the HardyLittlewood theorem for one-sided potentials in these spaes. Setion 8 is

dediated totwo-weight inequalitiesfor one-sided operators.

Finally,wepointout that onstants(often dierent onstants inthe same series

of inequalities)willgenerally be denoted by

c

or

C

.

2 Preliminaries

Let

be anopen set in

R n

and let

p

be ameasurable funtion on

. Suppose that

1 ≤ p ≤ p + < ∞ , (1)

where

p

and

p +

aretheinmumandthesupremumrespetivelyof

p

on

.Suppose

that

ρ

is a weight funtion on

, i.e.

ρ

is an almost everywhere positive loally

integrable funtion on

. We say that a measurable funtion

f

on

belongs to

L p( ρ · ) (Ω)

(or

L p(x) ρ (Ω)

) if

S p,ρ (f ) = Z

f (x)ρ(x) p(x) dx < ∞ .

It is known that (see, e.g., [33℄, [26℄, [28℄, [42℄)

L p( ρ · ) (Ω)

is a Banah spae with

the norm

(3)

k f k L p(·) ρ (Ω) = inf

λ > 0 : S p( · ),ρ f /λ

≤ 1 .

If

ρ ≡ 1

, then we use the symbol

L p( · ) (Ω)

(resp.

S p

) instead of

L p( ρ · ) (Ω)

(resp.

S p( · ),ρ

). It is lear that

k f k L p(·) ρ (Ω) = k f ρ k L p(·) (Ω)

. It should be also emphasized that

when

p

is onstant, then

L p( ρ · ) (Ω)

oinides with the lassial weighted Lebesgue

spae.

Further, wedenote

p (E) := inf

E p; p + (E) := sup

E

p, E ⊂ Ω, p (Ω) = p ; p + (Ω) = p + .

The followingstatement is well-known (see, e.g., [33℄, [42℄):

PropositionA.Let

E

be a measurable subsetof

. Then thefollowinginequalities hold:

k f k r L + r(·) (E) (E) ≤ S r( · ) (f χ E ) ≤ k f k r L r(·) (E) (E) , k f k L r(·) (E) ≤ 1;

k f k r L r(·) (E) (E) ≤ S r( · ) (f χ E ) ≤ k f k r L + r(·) (E) (E) , k f k L r(·) (E) ≥ 1;

Z

E

f (x)g(x)dx ≤ 1

r (E) + 1 (r + (E))

k f k L r(·) (E) k g k L r (·) (E) ,

where

r (x) = r(x) r(x) 1

and

1 < r ≤ r + < ∞ .

Let

I

bean open set in

R

. In the sequel we shall use the notation:

I + (x, h) := [x, x + h] ∩ I, I (x, h) := [x − h, x] ∩ I;

I (x, h) := [x − h, x + h] ∩ I.

Weintrodue the following onesided maximaloperators:

M α( · ) f

(x) = sup

h>0

1 (2h) 1 α(x)

Z

I(x,h)

| f (t) | dt,

M α( · ) f

(x) = sup

h>0

1 h 1 α(x)

Z

I − (x,h)

| f (t) | dt,

M α( + · ) f

(x) = sup

h>0

1 h 1 α(x)

Z

I + (x,h)

| f (t) | dt,

where

0 < α ≤ α + < 1

,

I

isanopen set in

R

and

x ∈ I

.

If

α ≡ 1

, then

M α( · )

,

M α( · )

and

M α( + · )

are the onesided HardyLittlewood maximaloperators whihare denoted by

M

,

M

and

M +

respetively.

In [4℄L. Diening proved the followingstatement:

(4)

Theorem A. Let

be a bounded open set in

R n .

Thenthe maximal operator

(M Ω f

(x) = sup

r>0

1 r n

Z

B(x,r) T Ω

| f (y) | dy, x ∈ Ω,

is bounded in

L p( · ) (Ω)

if

p ∈ P (Ω)

, that is,

a) 1 < p ≤ p(x) ≤ p + < ∞ ;

b) p

satisestheDiniLipshitz(log-Holderontinuity)ondition

(p ∈ DL(Ω))

:

there exists a positive onstant

A

suh that for all

x, y ∈ Ω

with

0 < | x − y | ≤ 1 2

the

inequality

p(x) − p(y) ≤ A

ln | x 1 y | (2)

holds.

The next statementwas proved in [3℄.

Theorem B.Let

be an open subsetof

R n

. Suppose that

1 < p ≤ p + < ∞

. Then

the maximal operator

M

is bounded in

L p( · ) (Ω)

if

(i)

p ∈ P (Ω)

;

(ii)

| p(x) − p(y) | ≤ C

ln(e + | x | ) (3)

for all

x, y ∈ Ω

,

| y | ≥ | x | .

We shall alsoneed the followingstatements:

Proposition B ([33℄, [42℄). Let

1 ≤ p(x) ≤ q(x) ≤ q + < ∞

. Suppose that

is an

open set in

R n

with

| Ω | < ∞

. Thenthe inequality

k f k L p(·) (Ω) ≤ (1 + | Ω | ) k f k L q(·) (Ω)

holds.

PropositionC([4℄).Let

beanopensetin

R n

andlet

p

and

q

beboundedexponents

on

. Then

L q( · ) (Ω) ֒ → L p( · ) (Ω)

ifandonlyif

p(x) ≤ q(x)

almosteverywhereon

andthereisaonstant

0 < K < 1

suh that

Z

K p(x)q(x)/( | q(x) p(x) | ) dx < ∞ . (4)

Remark A. In the previous statement itis used the onvention

K 1/0 := 0

.

Denition A ([13℄). Let

P − (I)

be the lass of all measurable positive funtions

p : I → R

satisfyingthe followingondition: there existapositiveonstant

C 1

suh

that for a.e

x ∈ I

and a.e

y ∈ I

with

0 < x − y ≤ 1 2

the inequality

p(x) ≤ p(y) + C 1

ln

1 x − y

(5)

(5)

holds.Further,wesaythat

p

belongsto

P + (I )

if

p

ispositivefuntionon

I

andthere

existsapositiveonstant

C 2

suhthatfora.e

x ∈ I

anda.e

y ∈ I

with

0 < y − x ≤ 1 2

the inequality

p(x) ≤ p(y) + C 2

ln

1 y − x

(6)

isfullled.

DenitionB.Wesaythatameasurablepositivefuntionon

I

belongstothelass

P ∞ (I )

(

p ∈ P ∞ (I)

)if (3) holds forall

x, y ∈ I

with

| y | ≥ | x | .

.

Weshall also needthe following denition:

Denition C. Let

p

be a measurable funtion on unbounded interval

I

in

R

. We say that

p ∈ G (I)

if there is aonstant

0 < K < 1

suh that

Z

I

K p(x)p /(p(x) p ) dx < ∞ .

Theorem C ([13℄). Let

I

be a bounded interval in

R

. Suppose that

1 < p ≤ p + <

. Then

(i)

if

p ∈ P − (I)

, then

M

is bounded in

L p( · ) (I)

;

(ii)

if

p ∈ P + (I )

, then

M +

is bounded in

L p( · ) (I)

.

In the ase of unbounded set wehave

TheoremD([13℄).Let

I

beanarbitraryopensetin

R

.Supposethat

1 < p ≤ p + <

. If

p ∈ P + (I ) ∩ P ∞ (I)

, then the operator

M +

is bounded in

L p( · ) (I)

. Further, if

p ∈ P − (I ) ∩ P ∞ (I)

. Thenthe operator

M

is bounded in

L p( · ) (I)

In partiular, the previous statementyields

Theorem E ([13℄).Let

I = R +

and let

1 < p ≤ p + < ∞

. Suppose that

p ∈ P + (I)

and there is a positive number

a

suh that

p ∈ P ∞ ((a, ∞ ))

. Then

M +

is bounded

in

L p( · ) (I)

. Further, if

p ∈ P − (I)

and there is a positive number

a

suh that

p ∈ P ∞ ((a, ∞ ))

, then

M

is bounded in

L p( · ) (I)

.

Thenext statementgivesoneweightriteriaforone-sidedmaximaloperatorsin

lassialLebesgue spaes (see [48℄, [1℄).

Theorem F ([1℄). Let

I ⊆ R

be an interval. Assume that

0 ≤ α < 1

and

1 < p <

1/α

, where

p

and

α

are onstants

(1/α = ∞

if

α = 0)

. We set

1/q = 1/p − α

.

(i)

Let

T := M α

. Thenthe inequality

Z

I | T f (x) | q v(x)dx 1/q

≤ C Z

I | f (x) | p v p/q (x)dx 1/p

(7)

holds if and only if

sup

h>0

1 h

Z

I + (x,x+h)

v (t)dt 1 q

1 h

Z

I − (x − h,x)

v p /q (t)dt p 1

< ∞ . (8)

(6)

(ii)

Let

T := M α +

. Then

(7)

holds if and only if

sup

h>0

1 h

Z

I − (x − h,x)

v(t)dt 1 q

1 h

Z

I + (x,x+h)

v p /q (t)dt p 1

< ∞ . (9)

Denition D. Let

I ⊆ R +

be an interval. Suppose that

1 < p < q < ∞

, where

p

and

q

are onstants.Wesay that the weight

v ∈ A p,q (I) (

resp.

v ∈ A + p,q (I) )

if

(8) (

resp.

(9))

holds.

If

p = q

,thenwedenotethelass

A + p,q (I ) (

resp.

A p,q (I) )

by

A + p (I ) (

resp.

A p (I)

).

Notie that

v ∈ A + p,q (I)

(resp.

v ∈ A p,q (I)

) is equivalent to the ondition

v ∈ A + 1+q/p ′ (I)

(resp.

v ∈ A 1+q/p ′ (I )

).

Further, we denoteby

D( R )

(resp.

D( R + )

) a dyadi lattie in

R

(resp. in

R +

).

Denition E. We say that a measure

µ

belongs to the lass

RD (d) ( R n )

(dyadi

reverse doublingondition) if there exists a onstant

δ > 1

, suh that for alldyadi

ubes

Q

and

Q

,

Q ⊂ Q

,

| Q | = | Q 2 n | ,

the inequality

µ(Q ) ≥ δµ(Q)

holds.

Denition F. We say that measure

µ

on

R n

satises the doublingondition (

µ ∈ DC( R n )

) if there isa positive number

b

suh that

µB(x, 2r) ≤ bµB (x, r)

for all

x ∈ R n

and

r > 0.

It is known (see [51℄, p. 11) that if

µ ∈ DC( R n )

, then

µ ∈ RD( R n )

, i.e., there

are positiveonstants

η 1

and

η 2

,

0 < η 1 , η 2 < 1

, suh that

µB(x, η 1 r) ≤ η 2 µB(x, r),

for all

x ∈ R n

and

r > 0.

It is easy tohek that if

µ ∈ DC( R n )

, then

µ ∈ RD (d) ( R )

.

We shall need some lemmasgivingCarleson-Hormandar type inequalities.

Lemma 2.1 ([52℄). Let

1 < p ≤ r < ∞

and let

ρ p ∈ RD (d) ( R n ),

where

ρ

is a

weight funtion on

R n

. Then there is a positive onstant

C

suh that for all non-

negative

f

the inequality

X

Q ∈ D( R n )

Z

Q

ρ p (x)dx

p r Z

Q

f (y)dy r

≤ C Z

R n

(f(x)ρ(x)) p dx 1 p

holds.

(7)

Lemma 2.2 ([50℄, [53℄). Let

u(x) ≥ 0

on

R n ; { Q i } i ∈ A

is a ountable olletion of

dyadi ubes in

R n

and

{ a i } i ∈ A , { b i } i ∈ A

be positive numbers satisfying

(i)

Z

Q i

u(x)dx ≤ Ca i

for all

i ∈ A;

(ii) X

j: Q j ⊂ Q i

b j ≤ Ca i

for all

i ∈ A.

Then

X

i ∈ I

b i

1 a i

Z

Q i

g(x)u(x)dx p 1 p

≤ C p

Z

R n

g p (x)u(x)dx p 1

for all

g ≥ 0

on

R n

and

1 < p < ∞

.

3 HardyLittlewood one-sided maximal funtions. One-

weight problem

Inthissetionwedisusstheone-weightproblemfortheone-sidedHardyLittlewood

maximaloperators.

Webegin with the following statement:

Lemma 3.1 ([13℄). Let

I

be a boundedinterval and let

(1)

holdon

I

. If

p ∈ P + (I)

,

thenthereisa positiveonstantdependingonlyon

p

suhthatforall

f

,

k f k L p(·) (I) ≤ 1

, the inequality

M + f (x) p(x)

≤ C 1 + M + | f | p( · ) (x)

holds.

Now we formulate the main results of this setion.

Theorem 3.1. Let

I

be a bounded interval in

R

and let

1 < p ≤ p + < ∞

.

(i)

If

p ∈ P + (I)

and aweightfuntion

w

satisestheondition

w( · ) p( · ) ∈ A + p (I)

,

then for all

f ∈ L p( w · ) (I)

the inequality

k (Nf)w k L p(·) (I) ≤ C k wf k L p(·) (I) (12)

holds, where

N = M +

.

(ii)

Let

p ∈ P − (I)

and let

w( · ) p( · ) ∈ A p (I)

. Then inequality

(12)

holds for all

f ∈ L p( w · ) (I)

, where

N = M

.

The result similar to Theorem 3.1 has been derived in [30℄, [31℄ for

M

, where

Ω ⊂ R n

isa bounded domain.

In the ase of unbounded intervalswe have the next statement:

Theorem 3.2. Let

I = R +

and let

1 < p ≤ p + < ∞

. Suppose that there is a

positive number

a

suh that

p(x) ≡ p c ≡ const

outside

(0, a)

.

(i)

If

p ∈ P + (I)

and

w( · ) p( · ) ∈ A + p (I)

, then

(12)

holds for

N = M +

.

(ii)

If

p ∈ P − (I)

and

w( · ) p( · ) ∈ A p (I)

, then

(12)

holds for

N = M

.

(8)

Theorem 3.1 yieldsthe followingorollaries:

Corollary 3.1. Let

p

be inreasing funtion on an interval

I = (a, b)

suh that

1 < p(a) ≤ p(b) < ∞

. Suppose that

w

isinreasing positive funtionon

I

. Thenthe

oneweight inequality

k w 1/p( · ) (M + f )( · ) k L p(·) (I) ≤ c k w 1/p( · ) f ( · ) k L p(·) (I)

holds.

Corollary 3.2. Let

p

be dereasing funtion on an interval

I = (a, b)

suh that

1 < p(b) ≤ p(a) < ∞

. Suppose that

w

is dereasingpositive funtion on

I

. Thenthe

oneweight inequality

k w 1/p( · ) (M f )( · ) k L p(·) (I) ≤ c k w 1/p( · ) f ( · ) k L p(·) (I)

holds.

Nowwe proveTheorems 3.1and 3.2.

Proof of Theorem 3.1. Sine the proof of the seond part is similar to the rst

one, we prove only

(i)

. It is enoughtoshow that

S p wM + (f /w)

≤ C

for

f

satisfyingthe ondition

k f k L p(·) (I) ≤ 1

.

First we prove that

S p f w

< ∞

,where

p (x) = p(x) p ·

By using Holder's inequality we nd that

S p

f w

= Z

I

[f /w] p (x) (x)dx ≤ Z

I | f(x) | p(x) dx p 1

− ·

Z

I

w(x) p(x)(1 (p ) ) dx 1 ´

(p − ) ′

< ∞ ,

beause

w p( · ) ( · ) ∈ A + p (I)

.

Thus Lemma3.1 might be appliedfor

p

. Consequently,

S p w(M + f /w)

= Z

I

M +

f w

(x)

p(x)

w p(x) (x)dx

= Z

I

M + (f /w) (x) p (x) p −

w p(x) (x)dx

≤ C Z

I

1 + M + f w p

∗ ( · ) (x)

p −

(w(x)) p(x) dx

≤ C Z

I

(w(x)) p(x) dx + C Z

I

M + f w p

∗ ( · ) (x)

p −

w p(x) (x)dx

(9)

≤ C + C Z

I

f /w p(x) w p(x) (x)dx ≤ C.

Proof of Theorem 3.2. First we prove

(i)

. Without loss of generality we an

assume that

M + f(a) < ∞

. Sine

M +

is sub-linear operator it is enough to prove

that

S p,w (M + f ) < ∞

, whenever

S p,w (f) < ∞ .

Wehave

Z

R +

M + f p(x)

(x)w(x) p(x) dx ≤ c Z a

0

M + f χ [0,a] p(x)

(x)w(x) p(x) dx

+ Z a

0

M + (f χ [a, ∞ ) ) p(x)

(x)w(x) p(x) dx + Z

a

M + (f χ [0,a] ) p(x)

(x)w(x) p(x) dx +

Z

a

M + f χ [a, ∞ )

p(x)

(x)w(x) p(x) dx

= c[I 1 + I 2 + I 3 + I 4 ].

Sine

M + f (x) = M + (f χ [0,a] )(x)

for

x ∈ [0, a]

, using the assumptions

w( · ) p( · ) ∈ A + p ([0, a])

,

p + ∈ P + ((0, a))

and Theorem 3.1wend that

I 1 < ∞

.

Further, the ondition

w( · ) p( · ) ∈ A + p (I)

implies that

w( · ) p( · ) ∈ A + p ((a, ∞ ))

.

Consequently, sine

p ≡ p c ≡

onst on

(a, ∞ )

,by Theorem Fwe have

I 4 < ∞ .

Now observe that

M + (f χ [0,a] )(x) = 0

when

x ∈ (a, ∞ )

. Therefore

I 3 = 0

.

It remainsto estimate

I 2

. Forthis notie that if

x ∈ (0, a)

,then

M + f · χ [a, ∞ )

(x) = sup

h>0

1 h

Z x+h

x | f(y) | χ [a, ∞ ) (y)dy

= sup

h>a − x

1 h

Z x+h

a | f (y) | χ [a, ) (y)dy

≤ sup

h>a − x

1 x + h − a

Z a+(x+h − a)

a | f(y) | χ [a, ∞ ) (y)dy ≤ M + f (a) < ∞ .

Hene,

I 2 ≤ c Z a

0

w(x) p(x) dx < ∞

beause

w( · ) p( · )

isloallyintegrableon

R +

.

To prove

(ii)

we use the notationof the proof of

(i)

substituting

M +

by

M +

.In

fat,the proof is similar tothat of

(i)

.The only diereneis in the estimates of

I 2 :=

Z a 0

M (f χ [a, ∞ ) ) p(x)

(x)w(x) p(x) dx

and

I 3 :=

Z

a

M (f · χ [0,a] )(x) p(x)

(x)w(x) p(x) dx.

Obviously, we have that

I 2 = 0

.Further, we represent

I 3

as follows:

I 3 = Z

a

M (f · χ [0,a] )(x) p c

(x)w(x) p c dx

(10)

= Z 2a

a

M (f · χ [0,a] )(x) p c

(x)w(x) p c dx +

Z

2a

M (f · χ [0,a] )(x) p c

(x)w(x) p c dx := I 3 (1) + I 3 (2) .

Observe that for

x ∈ (a, 2a]

,

M (f · χ [0,a] )(x) ≤ sup

x − a<h<x

1 a − x + h

Z a

a − (a − x+h) | f (y) | dy ≤ M f (a) < ∞ .

Hene,

I 3 (1) ≤ (M f) p c (a) Z 2a

a

(w(x)) p c dx < ∞ .

If

x > 2a

, then

M f

(x) ≤ 1 a − x

Z a

0 | f (y) | dy.

Therefore by using Holder's inequality with respet to the exponent

p( · )

(see

propositionA) we nd that

I 3 (2) ≤ Z

2a

(w(x)) p c (a − x) p c dx

Z a

0 | f (x) | dx p c

≤ c Z

2a

(w(x)) p c (a − x) p c dx

k f w k p L c p(·) ([0,a])

k w 1 k p c

L p ([0,a]) (·)

:= cJ 1 · J 2 · J 3 .

It is lear that

J 2 < ∞

. Further, sine

w( · ) p( · ) ∈ A p (a, ∞ )

, by Holder's

inequalitywe have that

w( · ) p( · ) ∈ A p c (a, ∞ )

beause

p c ≥ p

. Hene, by applying

Theorem F(for

α = 0

)wehave thatthe operator

M f := M (f χ (a, ∞ ) )

isbounded

in

L p w c ((a, ∞ ))

.Consequently, the Hardyoperator

H a f(x) = 1 x − a

Z x

a | f(t) | dt, x ∈ (a, ∞ ),

is bounded in

L p w c ((a, ∞ ))

. This implies(see, e.g., [20℄, [37℄) that

J 1 < ∞

.

It remains tosee that

J 3 < ∞

. Indeed, Proposition B yields

k w 1 k L p (·)

([0,a]) ≤ (1 + a) k w 1 k L (p − )′· ([0,a])

≤ c k χ { w −1 ≥ 1 } ( · )w 1 ( · ) k L (p − ) ′ (·) ([0,a]) + k χ { w −1 <1 } ( · )w 1 ( · ) k L (p − ) ′

([0,a])

≤ c χ { w −1 1 } ( · )w

p(·) p − (x)

L (p ) ([0,a]) + c

≤ c Z a

0

w p(x)(1 (p ) ) (x)dx

1/(p − )

+ c.

Thus

I 3 (2) < ∞

.

(11)

4 Frational maximal operators. One-weight problem

In this setionwe derivethe one-weight inequality forone-sided frational maximal

operators.Our main results are the following statements:

Theorem 4.1. Let

I

be a bounded interval andlet

1 < p ≤ p + < ∞ .

Suppose that

α

is onstant satisfying

0 < α < 1/p +

. Let

q(x) = 1 p(x) αp(x)

.

(i)

If

p ∈ P + (I )

and a weight

w

satises the ondition

w( · ) q( · ) ∈ A + p ,q (I)

, then

the inequality

k (N α f )w k L q(·) (I) ≤ C k wf k L p(·) (I) , f ∈ L p( w · ) (I) (10)

holds for

N α = M α +

.

(ii)

Let

p ∈ P − (I)

and let

w( · ) q( · ) ∈ A p ,q (I)

. Then inequality

(13)

holds for

N α = M α

.

Theorem 4.2. Let

I = R +

,

1 < p ≤ p + < ∞

and let

p(x) ≡ p c

onst outside

some interval

(0, a)

. Suppose that

q(x) = 1 p(x) αp(x)

, where

α

is onstant satisfying

0 < α < 1/p +

.

(i)

If

p ∈ P + (I)

and

w( · ) q( · ) ∈ A + p ,q (I)

, then

(10)

holds for

N α = M α +

.

(ii)

If

p ∈ P − (I)

and

w( · ) q( · ) ∈ A p ,q (I)

, then

(10)

holds for

N α = M α

.

Proof of Theorem 4.1. We prove

(i)

. The proof of

(ii)

isthe same. Firstwe show

that the inequality

M α + (f /w)(x) ≤ M + f p( · )/s( · ) w q( · )/s( · )

(x) s(x)/q(x) Z

I

f p(y) (y)dy α

,

holds,where

s(x) = 1 + q(x)/p (x)

.

Indeed, denoting

g( · ) := (f ( · )) p( · )/s( · ) (w( · )) q( · )/s( · )

we see that

f ( · )/w( · ) = (g( · )) s( · )/p( · ) w q( · )/p( · ) 1 = (g( · )) 1 α g s( · )/p( · )+α 1 w αq( · )

. By using Holder's inequality

with respet to the exponent

(1 − α) 1

and the fats that

s( · )/q( · ) = 1 − α

,

(s(y)/p(y) + α − 1)/α = s( · )

we have

1 h 1 α

Z

I + (x,x+h)

f (y) w(y) dy

≤ 1

h Z

I + (x,x+h)

g(y)dy

1 − α Z

I + (x,x+h)

g (s(y)/p(y)+α − 1)/α (y)w q(y) (y)dy α

≤ M + g(x) s(x)/q(x) Z

I + (x,x+h)

g s(y) (y)w q(y) (y) α

≤ M + g (x) s(x)/q(x) Z

I

f p(y) (y)dy α

.

(12)

Now we prove that

S q wM α + (f /w)

≤ C

when

S p (f) ≤ 1

. By applying the

abovederived inequalitywend that

S q wM α + (f /w)

≤ c Z

I

M α + (f p( · )/s( · ) w q( · )/s( · ) ) s(x)

(x)w q(x) (x)dx

= cS s M + (f p( · )/s( · ) w q( · )/s( · ) )w q( · )/s( · ) .

Observenowthat theondition onthe weight

w

isequivalenttothe assumption

w q( · ) ( · ) ∈ A + s (I)

. On the other hand,

k f p( · )/s( · ) k L s(·) (I) ≤ 1

. Therefore taking

Theorem 3.1intoaount we have the desired result.

Proof of Theorem 4.2. (i) Let

f ≥ 0

and let

S p,w (f ) < ∞

. Wehave

S q,w (M α + f ) =

Z

I

M α + f q(x)

(x)w(x) q(x) dx

≤ c Z a

0

M α + f χ [0,a] (x) q(x)

(x)w(x) q(x) dx +

Z a 0

M α + (f · χ [a, ) )(x) q(x)

(x)w(x) q(x) dx +

Z

a

M α + (f · χ [0,a] )(x) q(x)

(x)w(x) q(x) dx +

Z

a

M α + (f χ [a, ) )(x) q(x)

(x)w(x) q(x) dx

:= c[I 1 + I 2 + I 3 + I 4 ].

Itiseasytoseethat

I 1 < ∞

beauseofTheorem4.1andthe ondition

w q( · ) ( · ) ∈ A + p ,q ([0, a])

. Further, it is obvious that

I 3 < ∞

beause

M α + (f χ [0,a] )(x) = 0

for

x > a

.Further,observethat

I 2 ≤ c Z a

0

w(x) q(x) dx < ∞ ,

where the positive onstant depends on

α

,

f

,

p

,

a

.

It is easy tohek that by Holder's inequality with respet to the power

(p c ) /q c

/ (p ) /q

theondition

w( · ) q c ∈ A + p ,q ([a, ∞ ))

implies

w( · ) q c ∈ A + p c ,q c ([a, ∞ ))

.Hene,byusing

Theorem Fwe nd that

I 4 < ∞

.

(ii)

Wekeepthe notationof theproofof (i)but substitute

M α +

by

M α

.Theonly

dierenebetween the proofs of

(i)

and

(ii)

is inthe estimates of

I 2

and

I 3

.

It is obviousthat

I 2 = 0

,while for

I 3

we have

I 3 = Z 2a

a

M α (f · χ [0,a] )(x) q(x)

(x)w(x) q(x) dx +

Z

2a

M α (f · χ [0,a] )(x) q c

(x)w(x) q c dx := I 3 (1) + I 3 (2) .

(13)

If

x > a

, then

M α f (x) ≤ sup

x − a<h<x

h α 1 Z a

x − h | f(y) | dy ≤ cM α f (a).

Consequently,

I 3 (1) ≤ c M α f (a) q c

Z 2a a

w(x) q c

dx < ∞ .

Now observe that when

x > a

we havethe following pointwise estimates:

M α (f χ [0,a]) )(x) ≤ (x − a) α 1 Z a

0 | f (y) | dy ≤ (x − a) α 1 k f w k L p(·) ([0,a]) k w 1 k L p (·) ([0,a])

:= (x − a) α 1 J 1 · J 2 .

Hene,

I 3 (2)

Z

2a

(x − a) 1)q c (w(x)) q c dx

(J 1 · J 2 ) q c .

It is obviousthat

J 1 < ∞

.Further,

J 2 ≤ k w 1 ( · )χ w −1 >1 ( · ) k L p (·) ([0,a]) + k w 1 ( · )χ w −1 1 ( · ) k L p (·) ([0,a])

:= J 2 (1) + J 2 (2) .

Itislearthat

J 2 (2) < ∞

.Toestimate

J 2 (1)

observethatbyPropositionBwehave

J 2 (1) ≤ (1 + a) k w 1 χ w −1 >1 k L p ([0,a]) ≤ (1 + a) k w q( · )/q χ w −1 >1 k L p ([0,a])

≤ (1 + a) k w q( · )/q k L p ([0,a]) < ∞ .

Sine

M α

is bounded from

L p w c ([a, ∞ ))

to

L q w c ([a, ∞ ))

we have the Hardy

inequality

Z

a

(x − a) 1)q c w q c (x) Z x

a | f (t) | dt q c

dx 1/q c

≤ c Z

a | f(x) | p c w p c (x)dx 1/p c

.

From this inequality itfollows that (see, e.g., [20℄, [37℄)

Z

2a

(x − a) 1)q c (w(x)) q c dx < ∞ .

5 Generalized frational maximal operators. Two-weight

problem

Let

I = [a, b]

be a bounded interval and let

I + := [b, 2b − a); I := [2a − b, a).

Let

Q = I 1 × I 2 × · · · × I n

be a ube in

R n .

We denote:

Q + := I 1 + × I 2 + × · · · × I n + , Q := I 1 × I 2 × · · · × I n .

(14)

Let

α

be a measurable funtion on

R n , 0 < α ≤ α(x) ≤ α + < n.

Letus dene

dyadi frational maximal funtionson

R n

:

M α( +,(d) · ) f

(x) = sup

Q∋x Q∈D( Rn )

1

| Q | 1 α(x) n Z

Q +

| f (y) | dy;

M α( ,(d) · ) f

(x) = sup

Q∋x Q∈D( Rn )

1

| Q | 1 α(x) n Z

Q

| f (y) | dy.

If

α(x) ≡ 0

, then we have Hardy-Littlewood dyadi maximal funtions

M +,(d)

,

M ,(d)

.

Inthe paper[39℄the two-weightweak-typeinequalitywasproved inthelassial

Lebesgue spaes for one-sided dyadi Hardy-Littlewood maximal funtions dened

on

R n

.

Theorem 5.1. Let

p

be onstant and let

1 < p < q ≤ q + < ∞

,

0 < α ≤ α + < n

where

q

and

α

are measurable funtions on

R n

. Suppose that

w p ∈ RD (d) ( R n ).

Then

M α( +,(d) · )

is bounded from

L p w ( R n )

to

L q( v · ) ( R n )

if and only if

A := sup

Q,Q ∈ D( R n )

χ Q ( · ) | Q | α(·) n 1 v( · )

L q(·) ( R n )

χ Q + w 1

L p ( R n ) < ∞ . (11)

Proof.Neessity.Assuming

f = χ Q + w p

(

Q ∈ D( R n )

) inthe inequality

M α( +,(d)

· ) f

L q(·) v ( R n ) ≤ C k f k L p w ( R n ) (12)

we have that

χ Q ( · )

1

| Q | 1 α(x) n Z

Q +

f

L q(·) v ( R n )

= χ Q ( · ) | Q | α(·) n 1

L q(·) v ( R n )

Z

Q +

w p (y)dy

≤ M α( +,(d) · ) f

L q(·) v ( R n ) ≤ C Z

Q +

w p (y)dy 1 p

.

Thus, to show that (11) holds it remains to prove that for all dyadi ubes Q,

S Q = R

Q

w p (y)dy < ∞ .

Indeed, suppose the ontrary that

S Q = ∞

for some ube

Q.Then

S Q = k w 1 k L p (Q) = ∞ .

This implies that there is anon-negative funtion

g

suh that

g ∈ L p (Q)

and

R

Q

g (y)w 1 (y)dy = ∞ .

Further, let

Q = ¯ Q + ,

where

Q ¯ ∈ D( R n ).

Thentaking

f = χ Q gw 1

we have

k f k L p w ( R n ) = Z

Q ¯ +

g p (x)dx 1 p

< ∞ ;

(15)

M α( +,(d)

· ) f

L q(·) v ( R n ) ≥ χ Q ¯ ( · ) | Q ¯ | α(·) n 1

L q(·) v ( R n )

Z

Q ¯ +

f (y)dy

= χ Q ¯ ( · ) | Q ¯ | α(·) n 1

L q(·) v ( R n )

Z

Q ¯ +

g(y)w(y) 1 dy = ∞ .

This ontradits (12).

Suieny. Forevery

x ∈ R n

we take

Q x ∈ D( R n )

(

Q x ∋ x

) sothat

| Q x | α(x) n 1 Z

Q + x

| f (y) | dy > 1

2 M α( +,(d) · ) f

(x). (13)

Assume that

f

benon-negativebounded with ompat support. Then itis easy to see that we an take maximal ube

Q x

ontaining

x

for whih (13) holds. Let

Q ∈ D( R n )

and letus introdue the set

F Q :=

x ∈ Q : Q

ismaximal for whih

| Q | α(x) n 1 Z

Q +

f(y)dy > 1

2 M α( +,(d) · ) f(x) .

Dyadi ubeshave the followingproperty:if

Q 1 , Q 2 ∈ D( R n ),

and

Q o 1 T o Q 2 6 = ∅ ,

then

Q 1 ⊂ Q 2

or

Q 2 ⊂ Q 1

, where

Q o

denotes the inner part of aube

Q

.

Now observe that

F Q 1

T F Q 2 6 = ∅

if

Q 1 6 = Q 2

. Indeed, if

Q o 1 T o

Q 2 = ∅ ,

then it is

lear. If

Q o 1 T o

Q 2 6 = ∅ ,

then

Q 1 ⊂ Q 2

or

Q 2 ⊂ Q 1 .

Letus take

x ∈ F Q 1

T F Q 2 .

Then

x ∈ Q 1 , x ∈ Q 2

and

1

| Q 1 | 1 α(x) n Z

Q + 1

f (y)dy > 1 2

M α( +,(d) · ) f

(x); 1

| Q 2 | 1 α(x) n Z

Q + 2

f (y)dy > 1 2

M α( +,(d) · ) f

(x).

If

Q 1 ⊂ Q 2

, then

Q 2

would be the maximal ube for whih (13) holds.

Consequently

x 6∈ F Q 1

and

x ∈ F Q 2 .

Analogously we have that if

Q 2 ⊂ Q 1 ,

then

x ∈ F Q 1

and

x 6∈ F Q 2 .

Further, it is lear that

F Q ⊂ Q

and

S

Q ∈ D m ( R n )

F Q = R n ,

where

D m ( R n ) = Q : Q ∈ D( R n ), F Q 6 = ∅ .

Suppose that

k f k L p w ( R n ) ≤ 1

and that

r

is a number satisfying the ondition

p < r < q .

We have

M α( +,(d) · ) f r

L q(·) v ( R n ) = v r M α( +,(d) · ) f r

L q(·) r ( R n ) = sup Z

R n

v r (x)

M α( +,(d) · ) f r

(x)h(x)dx,

wherethe supremum is taken overallfuntions

h

,

k h k

L

q(·) r

( R n )

≤ 1.

Nowfor suh

an

h

, using Lemma2.1, wehave that

Z

R n

v r (x)

M α( +,(d) · ) f r

(x)h(x)dx = X

Q ∈ D m ( R n )

Z

F Q

v r (x)

M α(x) +,(d) f r

(x)h(x)dx

(16)

≤ C X

Q ∈ D m ( R n )

Z

F Q

v r (x) | Q | ( α(x) n 1)r h(x)dx Z

Q +

f(y)dy r

≤ C X

Q ∈ D m ( R n )

v r ( · ) | Q | ( α(·) n 1)r χ Q ( · )

L q(·) r ( R n )

h

L

q(·) r

( R n )

Z

Q +

f(y)dy r

= C X

Q ∈ D m ( R n )

v( · ) | Q | α(·) n 1 χ Q ( · ) r

L q(·) ( R n )

h

L

q(·) r

( R n )

Z

Q +

f(y)dy r

≤ C A r X

Q ∈ D m ( R n )

Z

Q +

w p (y)dy

r p Z

Q +

f(y)dy r

≤ CA r k f k r L p w ( R n ) .

In the last inequality we used also the fat that

Q + ∈ D( R n )

if and only if

Q ∈ D( R n ).

Letuspassnowtoanarbitrary

f

,where

f ∈ L p w ( R n ).

Forsuhan

f

wetakethe

sequene

f m = f χ Q(0,k m ) χ { f <j m }

,where

Q(0, k m ) := { (x 1 , · · · , x n ) : | x i | < k m , i = 1, · · · , n } .

and

k m , j m → ∞

as

m → ∞

.Thenitiseasytosee that

f m → f

in

L p w ( R n )

andalso

pointwise. Moreover,

f m (x) ≤ f(x)

. On the other hand,

M α( +,(d) · ) f m

is a Cauhy

sequene in

L q( v · ) ( R n ),

beause

M α( · ) f m − M α( · ) f j

L q(·) v ( R n ) ≤ M α( · ) f m − f j

L q(·) v ( R n ) ≤ C f m − f j

L p w ( R n ) .

Sine

L q( v · ) ( R n )

is aBanah spae, there exists

g ∈ L q( v · ) ( R n )

suh that

M α f m

− g

L q(·) v ( R n ) → 0.

Taking PropositionA intoaount we an onlude that there is asubsequene

M α( · ) f m k

whih onverges to

g

in

L q( v · ) ( R n )

and also almost everywhere. But

f m k

onverges to

f

in

L p w ( R n )

and almost everywhere. Consequently,

k g k L q(·) v ( R n ) ≤ C k f k L p w ( R n ) , (14)

wherethe positiveonstant

C

doesnot depend on

f

. Nowobservethat sine

f m k

is

non-dereasing, for xed

x ∈ Q, Q ∈ D( R n )

,we have that

| Q | α(x) n 1 Z

Q +

f (y)dy = lim

k →∞ | Q | α(x) n 1 Z

Q +

f m k (y)dy

≤ lim

k →∞ sup

Q ∋ x | Q | α(x) n 1 Z

Q +

f m k (y)dy = lim

k →∞

M α( +,(d) · ) f m k

(x)

(17)

and the lastlimitexists beause itonverges to

g

almost everywhere. Hene,

M α( +,(d) · ) f

(x) ≤ lim

k →∞

M α( +,(d) · ) f m k

(x) = g(x).

for almostevery

x.

Finally,(14) yields

M α( +,(d)

· ) f

L q(·) v ( R n ) ≤ C k f k L p w ( R n ) .

The proofof thenext statement issimilartothat ofTheorem 4.1;therefore itis

omitted.

Theorem 5.2. Let

1 < p < q ≤ q + < ∞ , 0 < α ≤ α + < n

, where

p

is onstant

and

q

,

α

are measurable funtions on

R n

. Suppose that

w p ∈ RD (d) ( R n ).

Then

M α( ,(d) · )

is bounded from from

L p w ( R n )

to

L q( v · ) ( R n )

if and only if

sup

Q,Q ∈ D( R n )

χ Q ( · ) | Q | α(·) n 1 v ( · )

L q(·) ( R n )

w 1 ( · )χ Q ( · )

L p ( R n ) < ∞ .

Let usnow onsider the ase when

p ≡ q ≡

onst.

Theorem5.3. Let

1 < p < ∞

,where

p

isonstant.Supposethat

0 < α ≤ α + < n

.

Then

M α( +,(d) · )

is bounded from

L p w ( R n )

to

L p v ( R n )

if and only if

Z

R n

v p (x)

M α( +,(d) · ) w p χ Q (x)

p

dx ≤ C Z

Q

w p (x)dx < ∞ ,

for all dyadi ubes

Q ⊂ R n

.

Proof. For suieny itis enough toshow that the inequality

v M α( +,(d) · ),u f

L p ( R n ) ≤ C u 1 p f

L p ( R n ) (15)

holds if for all

Q ∈ D( R n ), Z

R n

v p (x)

M α( +,(d) · ),u χ Q

p

(x) dx ≤ C Z

Q

| f (x) | p u(x) dx,

where

M α( +,(d) · ),u f

(x) = M α( +,(d) · ) f u (x).

To prove (15) we arguein the same manneras inthe proof of Theorem 4.1. Let

usonstrut the set

F Q

for

Q ∈ D( R n )

.We have

Ақпарат көздері

СӘЙКЕС КЕЛЕТІН ҚҰЖАТТАР

В этой работе мы будем заниматься сведением задачи Римана-Гильберта для си- стемы 1 в трехмерной области к системе интегральных уравнений Фредгольма при помощи метода Булигана - Жиро