• Ешқандай Нәтиже Табылған Жоқ

CHEMISTRY AND TECHNOLOGY

N/A
N/A
Protected

Academic year: 2022

Share "CHEMISTRY AND TECHNOLOGY "

Copied!
14
0
0

Толық мәтін

(1)

ISSN 2224-5286 (Print) ҚАЗАҚСТАН РЕСПУБЛИКАСЫ

ҰЛТТЫҚ ҒЫЛЫМ АКАДЕМИЯСЫНЫҢ Д.В.Сокольский атындағы «Жанармай, катализ жəне электрохимия институты» АҚ

Х А Б А Р Л А Р Ы

ИЗВЕСТИЯ

НАЦИОНАЛЬНОЙ АКАДЕМИИ НАУК РЕСПУБЛИКИ КАЗАХСТАН

АО «Институт топлива, катализа и электрохимии им. Д.В. Сокольского»

N E W S

OF THE ACADEMY OF SCIENCES OF THE REPUBLIC OF KAZAKHSTAN JSC «D.V. Sokolsky institute of fuel, catalysis and electrochemistry»

SERIES

CHEMISTRY AND TECHNOLOGY

1 (433)

JANUARY – FEBRUARY 2019

PUBLISHED SINCE JANUARY 1947 PUBLISHED 6 TIMES A YEAR

ALMATY, NAS RK

(2)

   

 

NAS RK is pleased to announce that News of NAS RK. Series of chemistry and technologies scientific journal has been accepted for indexing in the Emerging Sources Citation Index, a new edition of Web of Science. Content in this index is under consideration by Clarivate Analytics to be accepted in the Science Citation Index Expanded, the Social Sciences Citation Index, and the Arts & Humanities Citation Index. The quality and depth of content Web of Science offers to researchers, authors, publishers, and institutions sets it apart from other research databases. The inclusion of News of NAS RK. Series of chemistry and technologies in the Emerging Sources Citation Index demonstrates our dedication to providing the most relevant and influential content of chemical sciences to our community.

Қазақстан Республикасы Ұлттық ғылым академиясы "ҚР ҰҒА Хабарлары. Химия жəне технология сериясы" ғылыми журналының Web of Science-тің жаңаланған нұсқасы Emerging Sources Citation Index-те индекстелуге қабылданғанын хабарлайды. Бұл индекстелу барысында Clarivate Analytics компаниясы журналды одан əрі the Science Citation Index Expanded, the Social Sciences Citation Index жəне the Arts & Humanities Citation Index-ке қабылдау мəселесін қарастыруда. Webof Science зерттеушілер, авторлар, баспашылар мен мекемелерге контент тереңдігі мен сапасын ұсынады. ҚР ҰҒА Хабарлары. Химия жəне технология сериясы Emerging Sources Citation Index-ке енуі біздің қоғамдастық үшін ең өзекті жəне беделді химиялық ғылымдар бойынша контентке адалдығымызды білдіреді.

НАН РК сообщает, что научный журнал «Известия НАН РК. Серия химии и технологий» был принят для индексирования в Emerging Sources Citation Index, обновленной версии Web of Science.

Содержание в этом индексировании находится в стадии рассмотрения компанией Clarivate Analytics для дальнейшего принятия журнала в the Science Citation Index Expanded, the Social Sciences Citation Index и the Arts & Humanities Citation Index. Web of Science предлагает качество и глубину контента для исследователей, авторов, издателей и учреждений. Включение Известия НАН РК в Emerging Sources Citation Index демонстрирует нашу приверженность к наиболее актуальному и влиятельному контенту по химическим наукам для нашего сообщества.

(3)

Б а с р е д а к т о р ы

х.ғ.д., проф., ҚР ҰҒА академигі М.Ж. Жұрынов Р е д а к ц и я а л қ а с ы:

Ағабеков В.Е. проф., академик (Белорус) Волков С.В. проф., академик (Украина) Воротынцев М.А. проф., академик (Ресей) Газалиев А.М. проф., академик (Қазақстан) Ергожин Е.Е. проф., академик (Қазақстан)

Жармағамбетова А.К. проф. (Қазақстан), бас ред. орынбасары Жоробекова Ш.Ж. проф., академик (Қырғыстан)

Иткулова Ш.С. проф. (Қазақстан)

Манташян А.А. проф., академик (Армения) Пралиев К.Д. проф., академик (Қазақстан) Баешов А.Б. проф., академик (Қазақстан) Бүркітбаев М.М. проф., академик (Қазақстан) Джусипбеков У.Ж. проф. корр.-мүшесі (Қазақстан) Молдахметов М.З. проф., академик (Қазақстан) Мансуров З.А. проф. (Қазақстан)

Наурызбаев М.К. проф. (Қазақстан) Рудик В. проф.,академик (Молдова) Рахимов К.Д. проф. академик (Қазақстан) Стрельцов Е. проф. (Белорус)

Тəшімов Л.Т. проф., академик (Қазақстан) Тодераш И. проф., академик (Молдова) Халиков Д.Х. проф., академик (Тəжікстан) Фарзалиев В. проф., академик (Əзірбайжан)

«ҚР ҰҒА Хабарлары. Химия жəне технология сериясы».

ISSN 2518-1491 (Online), ISSN 2224-5286 (Print)

Меншіктенуші: «Қазақстан Республикасының Ұлттық ғылым академиясы» Республикалық қоғамдық бірлестігі (Алматы қ.)

Қазақстан республикасының Мəдениет пен ақпарат министрлігінің Ақпарат жəне мұрағат комитетінде 30.04.2010 ж. берілген №1089-Ж мерзімдік басылым тіркеуіне қойылу туралы куəлік

Мерзімділігі: жылына 6 рет.

Тиражы: 300 дана.

Редакцияның мекенжайы: 050010, Алматы қ., Шевченко көш., 28, 219 бөл., 220, тел.: 272-13-19, 272-13-18, http://chemistry-technology.kz/index.php/en/arhiv

© Қазақстан Республикасының Ұлттық ғылым академиясы, 2019 Типографияның мекенжайы: «Аруна» ЖК, Алматы қ., Муратбаева көш., 75.

(4)

Г л а в н ы й р е д а к т о р

д.х.н., проф.,академик НАН РК М. Ж. Журинов Р е д а к ц и о н н а я к о л л е г и я:

Агабеков В.Е. проф., академик (Беларусь) Волков С.В. проф., академик (Украина) Воротынцев М.А. проф., академик (Россия) Газалиев А.М. проф., академик (Казахстан) Ергожин Е.Е. проф., академик (Казахстан)

Жармагамбетова А.К. проф. (Казахстан), зам. гл. ред.

Жоробекова Ш.Ж. проф., академик (Кыргызстан) Иткулова Ш.С. проф. (Казахстан)

Манташян А.А. проф., академик (Армения) Пралиев К.Д. проф., академик (Казахстан) Баешов А.Б. проф., академик (Казахстан) Буркитбаев М.М. проф., академик (Казахстан) Джусипбеков У.Ж. проф. чл.-корр. (Казахстан) Мулдахметов М.З. проф., академик (Казахстан) Мансуров З.А. проф. (Казахстан)

Наурызбаев М.К. проф. (Казахстан) Рудик В. проф.,академик (Молдова) Рахимов К.Д. проф. академик (Казахстан) Стрельцов Е. проф. (Беларусь)

Ташимов Л.Т. проф., академик (Казахстан) Тодераш И. проф., академик (Молдова) Халиков Д.Х. проф., академик (Таджикистан) Фарзалиев В. проф., академик (Азербайджан)

«Известия НАН РК. Серия химии и технологии».

ISSN 2518-1491 (Online), ISSN 2224-5286 (Print)

Собственник: Республиканское общественное объединение «Национальная академия наук Республики Казахстан» (г. Алматы)

Свидетельство о постановке на учет периодического печатного издания в Комитете информации и архивов Министерства культуры и информации Республики Казахстан №10893-Ж, выданное 30.04.2010 г.

Периодичность: 6 раз в год Тираж: 300 экземпляров

Адрес редакции: 050010, г. Алматы, ул. Шевченко, 28, ком. 219, 220, тел. 272-13-19, 272-13-18, http://chemistry-technology.kz/index.php/en/arhiv

© Национальная академия наук Республики Казахстан, 2019

Адрес редакции: 050100, г. Алматы, ул. Кунаева, 142,

Институт органического катализа и электрохимии им. Д. В. Сокольского, каб. 310, тел. 291-62-80, факс 291-57-22, e-mаil:orgcat@nursat.kz

Адрес типографии: ИП «Аруна», г. Алматы, ул. Муратбаева, 75

(5)

N E W S

OF THE NATIONAL ACADEMY OF SCIENCES OF THE REPUBLIC OF KAZAKHSTAN

SERIES CHEMISTRY AND TECHNOLOGY

ISSN 2224-5286 https://doi.org/10.32014/2019.2518-1491.6

Volume 1, Number 433 (2019), 39 – 46

UDС 378(075.8): 544

L.D. Aikozova1, A.S. Tukibayeva1, A. Bayeshov2, B. Leska3,O.P. Baiysbay1

1 M. Auezov South Kazakhstan State University, Shymkent, Kazakhstan;

2JSC “D.V. Sokolsky Institute of Fuel, Catalysis and Electrochemistry”, Almaty, Kazakhstan;

3Adam Mickiewicz University in Poznan, Poland ainur_tukibaeva@mail.ru

STUDYING THE PROCESS OF OBTAINING PHOSPHATES OF METALS BASED ON THE PHASE EQUILIBRIA

OF FOUR COMPONENT SYSTEMS

Abstract. In this article the literature data on phase equilibria in four-component reciprocal systems are given and the solubility in the mutual quaternary systems FeCl2-H3PO4-H2O was determined in the range of concentrations of phosphoric acid from 5 to 55% H3PO4 at temperatures of 25, 60 and 80ºС.

The calculated data on the construction of the crystallization fields of salts in the studied system, taking into account the possible formation of one- and two-substituted iron phosphates, are given. The optimum consumption of phosphoric acid solution to obtain the desired product is defined. The maximum possible yield of the finished product in these conditions of the process from a unit mass of ferric chloride is also established.

The consumption of phosphoric acid was determined according to the diagram according to the lever rule as the ratio of the segments BM5 and M5D. The excess acid ratio over the stoichiometric norm was calculated for the formation of monosubstituted phosphates for the FeCl2-H3PO4-H2O system.

Keywords: multicomponent system, phase equilibrium, phase diagrams, phosphatizing, isothermal method, Yeneke diagram.

Introduction

The study of state diagrams of multicomponent systems, depicting the relationship between the property (temperature) and composition is of scientific interest. The interest and importance of the study of such state diagrams is not only to establish the presence of phases in the system, but also to clarify the nature and nature of the interaction between the components of the system, as far as possible, on the basis of studying the type of obtained diagrams [1].

For complex systems consisting of many phases and components, the construction of a state diagram is the only method that allows one to determine in practice how many phases and what phases form the system for given values of state parameters. Each real-life state of a system in a state diagram is depicted by a so-called figurative point; areas of existence of one phase correspond to sections of space [2-3].

The theoretical basis for the construction and interpretation of state diagrams of equilibrium systems are phase equilibrium condition, according to which the chemical potentials of each component in all phases at equilibrium are equal; the condition of chemical equilibrium, according to which the sum of the chemical potentials of the reacting substances at equilibrium is equal to the same amount for the reaction products; phases of the Gibbs rule [4-5].

In order to construct state diagrams by calculation, it is necessary to know the dependencies of the chemical potentials of all components of the system. The study of state diagrams is the main content of physico-chemical analysis.

Up to date the problem of anticorrosive protection of metals is still extremely topical one, and it requires fast decision. Herewith one of directions of development of effective phosphate protective coatings is using waste of chemical-metallurgical productions for that purpose.

(6)

In work [6], the possibility of using the electrochemical method - cyclic voltammetry for determining the applying the phosphate coatings on brass samples from phosphating solutions was considered.

The proposed voltammetric method is based on measuring the amount of current (amount of electricity) for cathode maxima of electroreduction of ionization products of disk brass electrodes in the absence of a phosphate coating and coated with a wide potential range against a background of 0.3 M Na2SO4. In work [7], the influence of zinc phosphonat ZnНТФ and sodium lingosulphate on speed of a steel corrosion is studied. It is established, that the greatest inhibitory effect is observed at a ratio 1:1.

Phosphatizing of non-ferrous metals, in particular brass, is used less frequently than phosphatization of ferrous metals. However, in the case of applying paint coatings, the preliminary application of a phosphate layer leads to a significant increase in the resistance of the applied coating, which is very important for non-ferrous metals with low adhesive properties [8-20].

Determining the optimal phosphatizing conditions for brass samples — the composition and nature of phosphating solutions, temperature, phosphating time, hydrodynamic conditions is associated with conducting a large number of laborious tests using chemical and physical methods [6, 21-24].

The use of such methods does not always allow to obtain unambiguous information about the physico-chemical characteristics of phosphate coatings. To establish the optimal conditions for monitoring and controlling the phosphating process on the samples used, the most informative method may be an electrochemical method based on fixing cyclic current-voltage curves.

For determination of the reactivity and conditions of applying the phosphate coatings on metals and alloys of different nature, chemical optical and physicochemical methods are widely used. Among electrochemical methods, the most widely used method is a method, based on the measurement of the potential of time. Using this method, the time of formation of phosphate coatings on the studied samples can be estimated.

It is known that chloride sublimates of oxidizing-chloridizing roasting of lead-zinc ore contain 28.9%

of chloride-ions, including 38.3% of ZnCl2 and 6.85% of FeCl2 and 6,75% PbCl2 [25]. When phosphoric- acid processing of these sublimates to obtain phosphating anticorrosive coatings four-component (quaternary) FeCl2-H3PO4-H2O systems is formed. Formation of five-component (quinary) FeCl2-ZnCl2- H3PO4-H2O system is possible as well. Researched processes represent complex chemical-technological systems, including both chemical and phase transformations in equilibrium conditions. Therefore the technology of processing of chloride sublimates with a certain composition using phosphoric acid is impossible to develop without complex physical-chemical analysis of these mutual systems and setting regularities of phenomena taking place in the systems. The analysis is performed by studying properties of a heterogeneous system depending on its composition and parameters and imaging these dependences on state diagrams.

The analysis of the latest news from literature sources for the question of phase equilibrium in pointed systems testifies that similar investigations weren’t conducted. There are data only about composition and properties of two-component systems FeCl2-H2O and ZnCl2-H2O in the literature [26], but those don’t correspond with composition of waste under investigation. Acid-containing ternary systems like FeCl2- HCl-H2O and ZnCl2- HCl-H2O, Fe3(PO4)2-H3PO4-H2O and Zn3(PO4)2-H3PO4-H2O aren’t studied. Phase equilibrium in a system Fe2O3-P2O5-H2O is established only, and this system has absolutely another composition with crystallization of iron (III) phosphates.

The system FeO-P2O5-H2O is researched at temperature 70ºС in the interval of diluted solutions only (less than 5,54% FeO and 15,1% P2O5) forming amorphous products like 2FeO·P2O5·3H2O in solid phase.

Hence, information about solubility in the given system is limited and it doesn’t correspond to conditions of process behavior.

Phase equilibrium in quaternary mutual systems FeCl2-H3PO4-H2O and ZnCl2-H3PO4-H2O, as well as in quinary system FeCl2-ZnCl2-H3PO4-H2O aren’t studied. There isn’t data about solubility and crystallization fields in given systems even at standard temperature.

In this connection, it is necessary to study the state diagrams of the above-mentioned four-component systems, which are the basis for the development of the theoretical foundations of technological processes occurring during the phosphoric acid processing of chloride sublimates.

(7)

METHODS

The solubility was studied by an isothermal method, the essence of which is to mix the solution at a constant temperature with an excess amount of solid phase until equilibrium is established. In the studied systems, chemical interaction of the initial reagents - a solution of phosphoric acid of a certain concentration and ferric (II) chloride proceeds until equilibrium is established in accordance with the reaction equation:

3FeCl2 +2H3PO4=Fe3(PO4)2+6HCl (1)

Depending on the degree of saturation of the acid with the cation, one-, two-, or three-substituted phosphates are formed; however, in order to reach the saturation state and determine the equilibrium composition of the system at a certain temperature, it is necessary to introduce chlorides in an amount exceeding the stoichiometric rate for the indicated reactions.

The experiments were carried out in a thermostated reactor, equipped with a refrigerator, a mixer with a water seal and a thermometer. The temperature was maintained using a contact thermometer with an accuracy of +/- 0.5 ° C. Due to the release of hydrogen chloride as a result of the reaction, the process was carried out in a fume hood, and a reflux condenser and an absorber with cold water were used to remove the formed gas. Removal of gas from the reactor to the absorber is provided by connecting it to a water jet pump.

In a solution of phosphoric acid (chemical pure) of a certain concentration was added a portion of ferric chloride in an amount to saturate the solution with salt after the reaction, which is determined by the remaining excess salt in the solid phase. Upon reaching saturation every half hour using a thermostated sampler, samples were taken of the liquid phase for analysis on the content of chloride ions. About the time to reach equilibrium was judged by the constancy of the content of chloride ions in the last two or three selected samples. The content of chloride ions was determined by argentometric method.

Solubility was calculated on the basis of 3-4 parallel experiments results at allowable discrepancy less than 0.5% between two parallel analyses of liquid phase in every experiment. It is established experimentally that equilibrium in systems FeCl2-H3PO4-H2O is reached in 2.5 hours at any temperature [27]. Solubility is studied in phosphoric acid concentration interval from 5 to 55% of H3PO4 at temperatures 25, 60 and 80ºС. The last ones correspond to conditions of chloride sublimate processing.

RESULTS AND DISCUSSION

In order to construct solubility isotherms for mutual quaternary systems on flat square Yeneke diagram the ionic salt composition of the system is expressed in Yeneke indexes, which are determined on the basis of the equality of the sum of the number of moles of cations and anions. So for the system FeCl2- H3PO4-H2O the sum of cation moles 3Fe2+ (bounded as chlorides and phosphates in the solution) and 6Н+ (bounded as phosphoric and hydrochloric acids) is to be equal to the sum of anion moles 6Cl- and 2PO43-, are also in the composition of the corresponding salts and acids. Based on this, the ionic composition of the system at any point in the diagram is defined as the molar ratio of one of the anions to the sum of anions and the molar ratio of 6H+ to the sum of cations [28].

For this purpose, the data on the composition of the equilibrium system obtained as a result of the studies carried out are recalculated taking into account the proceeding chemical reaction (1). The content of chloride ions in the solution takes into account their presence both in the form of ferric chloride and hydrogen chloride, and the high content of these ions in dilute phosphoric acid solutions (5-15% H3PO4 at 25 °C) indicates that in equilibrium with a stable pair salts of Fe3(PO4)2-6HCl is also a salt of FeCl2, and H3PO4 is absent. For higher temperatures, the region of such a composition of the equilibrium system expands to 20 and 25% H3PO4 at 60 and 80 °C, respectively. In the FeCl2-H3PO4-H2O system, the temperature dependence is traced: with increasing temperature, the solubility increases, and the point of triple eutonics shifts to the area of higher concentrations.

Recalculation of the content of system components with regard to the reactions taking place shows that, starting from the inflection point, phosphoric acid is in equilibrium with a stable pair of salts up to the maximum concentration of this acid, which indicates a wide crystallization range of iron phosphates.

(8)

Next, we calculated the number of moles of compounds and the number of moles of individual ions in the composition of these compounds, and then the total number of moles of like ions. Based on the obtained data, the coordinates of the points on the solubility isotherms were calculated in accordance with the above method. The composition of the solid phase, equilibrium with the solution in the FeCl2-H3PO4- H2O system is given in table 1.

Table 1 - The composition of the solid phase, equilibrium with the solution in the FeCl2-H3PO4-H2O system

Composition of the initial

acid,%

Content of Р2О5/Cl- in solid phase, %,

at temperatures of The composition of the equilibrium solid phase at temperatures of

Н3РО4 25ºС 60ºС 80ºС 25ºС 60ºС 80ºС

5 0/37,2 0/39,1 0/42,2 FeCl2· H2O FeCl2· H2O FeCl2· H2O 10 0/45,1 0/40,4 0/47,7 FeCl2· H2O FeCl2 FeCl2

15 3,0/43,5 0/46,9 0/50,3 FeCl2+ Fe3(PO4)2 FeCl2 FeCl2

20 29,2/16,1 0/51,2 0/50,2 FeCl2+ Fe3(PO4)2 FeCl2 FeCl2 25 38,7/1,3 28,7/12,1 0/48,9 FeCl2+Fe3(PO4)2+

FeHPO4

FeCl2+ Fe3(PO4)2

FeCl2

30 50,3/0 42,0/0 27,7/10,4 Fe3(PO4)2+ FeHPO4

Fe3(PO4)2+ FeHPO4

FeCl2+ Fe3(PO4)2

35 51,9/0 52,1/0 40,9/0 Fe(H2PO4)2 Fe(H2PO4)2 Fe3(PO4)2+ FeHPO4

40 54,3/0 55,0/0 50,5/0 Fe(H2PO4)2 Fe(H2PO4)2 Fe(H2PO4)2

45 53,8/0 53,5/0 53,7/0 Fe(H2PO4)2 Fe(H2PO4)2 Fe(H2PO4)2 50 53,0/0 53,9/0 54,4/0 Fe(H2PO4)2 Fe(H2PO4)2 Fe(H2PO4)2

55 54,1/0 54,0/0 53,1/0 Fe(H2PO4)2 Fe(H2PO4)2 Fe(H2PO4)2

Applying certain compositions of saturated solutions (XPO4, XH) on the Jeneke diagram, we obtain the line of solubility isotherms in the studied system at temperatures of 25, 60 and 80ºС.

Based on the obtained data, salt crystallization fields were constructed in the studied system, taking into account the possible formation of one- and two-substituted iron phosphates, which compositions are indicated by points F1 and F2, respectively (Fig. 1).

1 0 0 9 0 8 0 7 0 6 0 5 0 4 0 3 0 2 0 1 0

1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0

F1 F2

Е2

Е1

Е3

F e C l2

F e (Н2Р О4)2

FeНРО4+Fe(Н2РО4 )2

Fe3(РО4)2+FeHPО4

F e3(Р О4)2+ F e C l2

8 0 7 0 6 0 5 0 4 0 3 0 2 0 1 0 0

1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0

3 F e C l2

F e3(Р О4)2 2Н3Р О4

6 H C l B

A D

C

М М1

М2

M3

Е1

M4 М5

8 0 °С 6 0 °С 2 5 °С

Figure 1 - Diagram of the FeCl2-H3PO4-H2O phase system

(9)

From Fig. 1 it is seen that in the FeCl2-H3PO4-H2O system, the displacement of triple eutonics, the increase in solubility and the expansion of the co-crystallization region of Fe3(PO4)2 and FeCl2 and FeCl2 salts with increasing temperature are traced. The fields of crystallization of iron phosphate are reduced, which affects the choice of optimal conditions for obtaining monosubstituted iron phosphates. The points of the triple eutonic E1, E2 and E3 are determined by the extreme point in the composition of the saturated solution at a given temperature and confirmed by the composition of the solid phase determined by the content of phosphate ions and chloride ions in it (Table 1).

According to the rule, the connecting direct process of the interaction of chlorides with phosphoric acid is depicted in the diagram by the BD line, connecting the composition points of the initial pure reagents [29]. At their equimolecular ratio, the figurative point of the composition of system M will be in the region of the joint crystallization of the Fe3(PO4)2 and FeCl2 salts, which does not allow to obtain the desired product in the solid phase. In order to achieve the maximum yield of the product, the initial reagents should be taken in such a ratio that the figurative point of the system composition is on the crystallization beam, connecting the point of the salt composition, for example, Fe3(PO4)2, and the eutonic point corresponding to the process temperature - E1, E2 and E3, determining the composition of the solutions, saturated simultaneously with three salts, for temperatures of 25, 60 and 80ºС, respectively.

These are respectively points M1, M2 and M3. In this case, the crystallization of the production salt occurs over a longer segment, which makes it possible to isolate the maximum amount of the product in the solid phase. For the formation of the target product - iron dihydrogen phosphate, the process must be carried out at such a ratio of initial compounds that the figurative point of the system composition is on the crystallization line of Fe(H2PO4)2 salt connecting the points of their composition F1 and the eutonic point.

In the case of carrying out the process at a temperature of 80 °C, the desired point M5 is located at the intersection of the line of interaction between the initial reagents and the crystallization beam F1E3, which ensures the maximum yield of the product.

In order to obtain the specified composition of the system, the consumption of phosphoric acid solution is determined according to the lever rule and, more precisely, by the method of compiling the material balance of the process [30]. As a result of its decision, the yield of the finished product, the Fe(H2PO4)2 salt, is also determined.

The consumption of phosphoric acid is determined according to the diagram according to the lever rule as the ratio of the segments BM5 and M5D. For the FeCl2-H3PO4-H2O system, the excess acid ratio over the stoichiometric norm for the formation of monosubstituted phosphates is calculated as 98: 43 = 2.28. Then the consumption of a phosphoric acid solution, taking into account its concentration of 45% for the interaction with the initial 5 grams of chloride in accordance with the equation of reaction (1) is determined as (5·196:381)2.28):0.45 = 13.02 g per reaction with iron chloride. Taking into account the density of the solution of a given concentration, equal to 1.293 g/cm3, the volume flow of the phosphoric acid solution will be 13.02:1.293 = 10.07 cm3. We will carry out a refined calculation of the optimal consumption of phosphoric acid for carrying out the reaction by preparing a complete and partial equation of the material balance of the process per unit mass of the initial chloride. The complete material balance equation for the process of the interaction of pure ferric chloride and phosphoric acid on the salt mass of the system is determined as follows:

1 FeCl2+X H3PO4=Y Fe(H2PO4)2+Z solution E3 (2) Substituting into the equation the composition of the solution E3, calculated when constructing solubility isotherms for extreme points (table 2-4), we get:

1FeCl2+XH3PO4=YFe(H2PO4)2+Z(0,426РО43-+0,574Cl-+0,772H++0,228Fe2+) (3)

(10)

Table 2 - Results of the recalculation of data by Jeneke at 25 °C The initial system

25ОС

The composition of the solution in the equilibrium system, %

The number of moles of components Н3РО4 FeCl2 Fe3(PO4)2 6HCl 3FeCl2 2H3PO4 Fe3(PO4)2 6HCl 3FeCl2 2H3PO4

5 29,71 - 5,59 43,43 0 0,0255 0,0255 0,114 -

10 23,54 9,13 11,17 22,67 0 0,0510 0,051 0,0595 -

15 23,54 - 16,76 12,95 0 0,07654 0,07653 0,03399 -

20 21,07 27,40 21,66 0 0,62 0,09891 0,0989 - 0,00316

25 18,58 35,41 19,10 0 7,90 0,08723 0,0872 - 0,04031

30 14,87 24,99 15,29 0 16,32 0,0698 0,0698 - 0,0833

35 12,39 20,82 12,74 0 23,60 0,05816 0,05817 - 0,1204

40 9,91 16,66 10,19 0 30,88 0,04654 0,0465 - 0,1576

45 8,67 14,57 8,92 0 37,02 0,0407 0,0407 - 0,1889

50 6,19 10,41 6,37 0 44,30 0,0291 0,0291 - 0,226

55 2,48 4,16 2,55 0 52,72 0,01162 0,01164 - 0,269

Table 3 - Results of recalculation of data by Jeneke at 60 ° C The initial system

60ОС

The composition of the solution in the equilibrium system, %

The number of moles of components Н3РО4 FeCl2 Fe3(PO4)2 6HCl 3FeCl2 2H3PO4 Fe3(PO4)2 6HCl 3FeCl2 2H3PO4

5 35,93 9,13 5,59 54,55 - 0,0255 0,0255 0,143 -

10 33,45 18,26 11,17 40,40 - 0,051 0,051 0,106 -

15 28,50 27,40 16,76 21,81 - 0,0765 0,0765 0,0572 -

20 26,02 36,53 22,35 7,66 - 0,102 0,102 0,0201 -

25 22,30 37,48 22,93 - 4,48 0,105 0,105 - 0,0229 30 19,82 33,32 20,38 - 11,76 0,093 0,093 - 0,060

35 16,11 27,07 16,56 - 20,18 0,0756 0,0756 - 0,103

40 13,63 22,91 14,01 - 27,46 0,064 0,064 - 0,140

45 11,20 18,82 11,51 - 34,70 0,0526 0,0526 - 0,177

50 8,68 14,57 8,92 - 42,02 0,0407 0,0407 - 0,214

55 6,19 10,40 6,37 - 49,30 0,0291 0,0291 - 0,252

Table 4 - Results of recalculation of data by Jeneke at 80 ° C The initial system

80ОС

The composition of the solution in the equilibrium system, %

The number of moles of components Н3РО4 FeCl2 Fe3(PO4)2 6HCl 3FeCl2 2H3PO4 Fe3(PO4)2 6HCl 3FeCl2 2H3PO4

5 39,65 9,13 5,59 61,20 - 0,0255 0,0255 0,161 -

10 37,17 18,26 11,17 47,05 - 0,051 0,051 0,125 -

15 34,69 27,40 16,76 32,90 - 0,0765 0,0765 0,0864 -

20 32,34 36,53 22,35 18,97 - 0,102 0,102 0,0498 -

25 29,74 45,66 27,93 4,59 - 0,128 0,128 0,012 -

30 27,26 45,82 28,03 - 4,92 0,128 0,128 - 0,025

35 26,12 43,91 26,86 - 10,96 0,123 0,123 - 0,056

40 24,78 41,65 25,48 - 17,20 0,116 0,116 - 0,088

45 23,54 39,57 24,20 - 23,34 0,111 0,111 - 0,119

50 19,82 33,32 20,38 - 31,76 0,093 0,093 - 0,162

55 17,35 29,16 17,84 - 39,04 0,081 0,081 - 0,199

Next, we compose the partial equations for the individual components - ions, taking into account their mass fraction in the anhydrous compound, and solve them with respect to the unknowns:

By Fe2+ : 1·0,441=Y·0,224+Z·0,228 (4)

By Cl- : 1·0,559= Z·0,574 (5)

By РО43- : X·0,969=Y·0,776+Z·0,426 (6)

Hence the mass of the eutonic solution E3 is Z = 0.974; the mass of production dihydrogen phosphate of iron is Y = 0,977; mass of phosphoric acid is X = 1.210 per unit mass of FeCl2, or 2.69 in terms of 45%

phosphoric acid. On 5 grams of this reagent, the consumption of the acid solution will be 13.44 g, and taking into account its density, 13.44: 1.293 = 10.4 cm3, which is slightly more than the volume flow, calculated using the lever rule.

(11)

Conclusion

Thus, the optimal consumption of a phosphoric acid solution to obtain a specified product from a unit mass (1 kg) of iron chloride — 2.69 kg was determined. The maximum possible yield of the finished product in these conditions of the process from a unit mass of iron chloride - 0.977 is also established.

Also, the studied phase diagram of the FeCl2-H3PO4-H2O system at temperatures of 25, 60 and 80ºС represents new scientific data on solubility in reciprocal four-component systems, which significantly expand the area of knowledge in the physico-chemical analysis of multicomponent systems and provide a theoretical basis for the analysis and justification of the optimal conditions of the processes occurring in the studied systems.

ƏҚК 378(075.8): 544

Л.Д. Айкозова1, А.С. Тукибаева1, А.Баешов2, Б. Леска3, О.П. Байысбай1

1М.Əуезов атындағы Оңтүстік Қазақстан мемлекеттік университеті, Шымкент, Қазақстан;

2Д.В.Сокольский атындағы «Жанармай, катализ жəне электрохимия институты» АҚ, Алматы, Қазақстан;

3Познаньдағы Адам Мицкевич университеті, Польша

ТӨРТ КОМПОНЕНТТІ ЖҮЙЕЛЕРДІҢ ФАЗАЛЫҚ ТЕПЕ-ТЕҢДІГІ НЕГІЗІНДЕ ТЕМІР ФОСФАТЫН АЛУ ҮРДІСІН ЗЕРТТЕУ

Аннотация: Бұл мақалада өзара əрекеттесетін төрт компонентті жүйелердегі фазалық тепе-теңдігі туралы əдебиеттік мəліметтердің талдауы келтірілген, сонымен қатар фосфор қышқылының шоғыры 5 жəне 55% H3PO4

аралығында 25, 60 жəне 80ºС температураларда FeCl2-H3PO4-H2O жүйесінің ерігіштігі қарастырылған.

Сондай-ақ зерттеліп отырған жүйеде бір немесе екі негізді темір фосфатының түзілуін ескере отырып, тұздардың кристалдану алаңдарын тұрғызудың есептік мəліметтері келтірілген. Аталған өнімді алу үшін қажетті фосфор қышқылының тиімді шығыны анықталған. Сонымен қатар, үрдістерді жүргізудің берілген шарттарында темір хлоридінің бір бірлігінен дайын өнімнің мүмкін максималды шығымы тағайындалған.

Фосфор қышқылының шығыны диаграмма бойынша иінтірек ережесіне сəйкес, ВМ5 жəне М5D кесінділерінің қатынасы ретінде анықталды. FeCl2-H3PO4-H2O жүйесі үшін бір орын басқан фосфаттардың түзілуіне стехиометриялық нормадан жоғары қышқылдың артық мөлшерінің коэффициенті есептелді.

Түйін сөздер: Көп компонентті жүйе, фазалық тепе-теңдіктер, фазалық диаграммалары, фосфаттау, изотермиялық əдіс, Йенеке диаграммасы.

Л.Д. Айкозова1, А.С. Тукибаева1, А.Баешов2, Б. Леска3, О.П. Байысбай1

1Южно-Казахстанский государственный университет имени М.Ауэзова, Шымкент, Казахстан;

2АО «Институт топлива, катализа и электрохимии им. Д.В. Сокольского», Алматы, Казахстан;

3Университет Адама Мицкевича в Познани, Польша

ИЗУЧЕНИЕ ПРОЦЕССА ПОЛУЧЕНИЯ ФОСФАТА ЖЕЛЕЗА НА ОСНОВЕ ФАЗОВЫХ РАВНОВЕСИИ ЧЕТЫРЕХКОМПОНЕНТНЫХ СИСТЕМ

Аннотация: В данной статье приведен анализ литературных сведений по фазовым равновесиям в четырехкомпонентных взаимных системах, также изучена растворимость системы FeCl2-H3PO4-H2O в интервале концентраций фосфорной кислоты от 5 до 55% H3PO4 при температурах 25, 60 и 80ºС.

Приведены расчетные данные по построению полей кристаллизации солей в изучаемой системе с учетом возможного образования одно- и двухзамещенных фосфатов железа. Определено оптимальный расход раствора фосфорной кислоты на получение заданного продукта. Установлен также максимально возможный выход готового продукта в данных условиях проведения процесса из единицы массы хлорида железа.

Расход фосфорной кислоты определяли по диаграмме согласно правилу рычага как отношение отрезков ВМ5 и М5D.

Рассчитывали коэффициент избытка кислоты сверх стехиометрической нормы для образования однозамещенных фосфатов для системы FeCl2-H3PO4-H2O.

Ключевые слова: многокомпонентая система, фазовое равновесие, фазовые диаграммы, фосфатирование, изотермический метод, диаграмма Йенеке

Information about authors:

Aikozova Laura Dauletbekovna – candidate of Engineering, the acting associate professor of the Department of Chemistry, M.Auezov South Kazakhstan State university, laura.aykozova@mail.ru, https://orcid.org/0000-0001-9178-424X;

Tukibayeva Ainur Sultankhanovna – candidate of Chemistry, associate professor of the Department of Chemistry, M.Auezov South Kazakhstan State university, ainur_tukibaeva@mail.ru, https://orcid.org/0000-0002-6648-5253;

Bayeshov Abduali – Doctor of Ghemistry, professor, chief of the laboratory in D.V. Sokolsky Institute of Fuel, Catalysis and Electrochemistry, bayeshov@mail.ru, https:// orcid.org/0000-0003-0745-039X;

(12)

Leska Boguslawa – doctor of Sc., professor of Adam Mickiewicz University in Poznan (Poland), bogunial@amu.edu.pl, https://orcid.org/0000-0002-9504-5265;

Baiysbai Omirbek Pernebaiuly - candidate of Engineering, the acting associate professor of the Department of Chemical technology of inorganic substances, M.Auezov South Kazakhstan State university, omirbek_7819@mail.ru, https://orcid.org/0000-0002-4209-3087

REFERENCES

[1] Zakharov A.M. (1990) State diagrams of double and triple systems. Metallurgy, Moscow (in Russian).

[2] Lupis K. (1989) Chemical thermodynamics of materials. Metallurgy, Moscow. ISBN: 5-229-00001-5(in Russian).

[3] Morachevsky A.G. (1987) Thermodynamics of molten metal and salt systems. Metallurgy, Moscow. (in Russian).

[4] Kazakov A.I., Mokritsky V.A., Romanenko V.N., Khitova J. (1987) Calculation of phase equilibria in multicomponent systems / Ed. Romanenko V.N. Metallurgy, Moscow. (in Russian)

[5] Practical work .Phase equilibrium in one-, two-and three-component systems. Russian chemical technological university, Moscow, 2007(in Russian).

[6] Statsjuk V. N., Fogel L. A., Bold А. (2016) Cyclic voltammetric curves brass electrode with phosphate coating, News of the National Academy of Sciences of the Republic of Kazakhstan, Series Chemistry and Technology, 2(416): 129 – 135 https://doi.org/10.32014/2018. 2518-1491 (in Russian).

[7] Statsjuk V.N., Sultanbek U., Ait S., Vogel L.A. (2014) Mutual influence of zinc phosphonates and sodium lignosulfonate on corrosion processes of steel, News of the National Academy of Sciences of Kazakhstan, Series of Chemistry and Technology, 1 (403): 82-85 https://doi.org/10.32014/2018. 2518-1491 (in Russian).

[8] Weng D., Wang R., Zhang G. (1998), Environmental impact of zinc phosphating in surface treatment of metals, Metal Finishing. 96, 9:54-57 (in Eng.)

[9] Hao Y., Liu F., Han E., Anjum S., Xu G. (2013) The mechanism of inhibition by zinc phosphate in an epoxy coating, Corrosion Science, 69, 4:77-86 (in Eng.)

[10] Gabe D.R. (1972) Electropolishing of copper and copper-based alloys in ortho-phosphoric acid, Corrosion Science, 12, 2:113-120 (in Eng.).

[11] Pourbaix M. (1974) Applications of electrochemistry in corrosion science and in practice, Corrosion Science, 14, 1: 25- 82 (in Eng.).

[12] Biegalska B., Smieszek E. (1982) Coatings on non-ferrous metals – Al, Zn, Cu, Pb, Progress in Organic Coatings, 10, 9:

215-234 (in Eng.).

[13] Bibler J.W. (2008) Non-chrome-containing coatings for zinc and zinc alloys: environmentally friendly alternatives provide equal or better adhesion and corrosion resistance as conventional methods, Metal Finishing, 106, 4:41-46 (in Eng.).

[14] D’Ans P., Degrez M. (2015) A strategy for the selection of multiple materials and processes fulfilling inherently incompatible functions: The case of successive surface treatments, Surface and Coatings Technology, 276, 8:349-359 (in Eng.).

[15] Pedrazzini C. (1997) Phosphating process, Metal Finishing, 95, 10:110 (in Eng.).

[16] Berry R. (2008) Anodic vs cathodes electro cleaning, plus surface activation and prepping brass parts for plating, Metal Finishing, 106, 7-8:45 (in Eng.).

[17] Gadzhov L., Mantcheva R., Kanchev K. (2007) Corrosion-resistant and protective properties of amorphous nickel- phosphorous coatings, Metal Finishing, 105, 6:33-70 (in Eng.).

[18] Munoz A.G., Shultze J.W. (2004) Effect of NO2- on the corrosion of Ni in phosphate solutions, Electrochemical Acta, 49, 3:293-301 (in Eng.).

[19] Asthana R., Kumar A., Dahotre N.B. (2006) Coating and Surface Engineering, Materials Processing and Manufacturing Science. 65, 5:313-395 (in Eng.).

[20] Mc Lay W., Reinhard F.P. (2002) Waste minimization and recovery technologies, Metal Finishing, 100, 9:798-829 (in Eng.).

[21] Abrashov A.A., Chamashkina N.N., Yuryeva G.A., Grigoryan N.S., Vaghramyan T.A. (2012) Electroplating and surface treatment [Gal’vanotekhnika I obrabotka poverhnosti]. 20, 4: 41-46 (in Russian).

[22] Albalac R.J., Tadmor Z., Talmon G. (1987) Scanning electron microscopy studies of polymer melt depolarization, Ultramicroscopy, 23, 1:234-235 (in Eng.).

[23] Kossoy E., Khoptiar Y., Cytermann C., Shemesh G. (2008) The use of SIMS in quality control and failure analysis of electrodeposited items inspected for hydrogen effect, Corrosion science, 50, 5:1481-1491(in Eng.)

[24] Akayeva T.K., Rodin O.N., Gunin V.V., Akayev O.P. (2014) Bulletin of N. A. Nekrasov Kostroma State University [Vestnik Kostromskogo gosudarstvennogo universitete im.N.A.Nekrasova], 5: 39-41. (in Russian).

[25] Anarbaev A.A., Kabylbekova B.N., Aykozova L.D. (2007) Environmental assessment of the processing technology of lead-, zinc-containing production waste for phosphate compounds. Proceedings of the Scientific Conference of Students, Postgraduates and Young Scientists "Lomonosov-2007". Astana, 2, P.89-190 (in Russian).

[26] Pozin ME, Zinyuk R.Yu. (1985) Physico-chemical bases of inorganic technology. Chemistry, Leningrad. (in Russian).

[27] Anarbaev A.A., Aykozova L.D., Seitmagzimova G.M. (2009) Study of the solubility of FeCl2-H3PO4-H2O and ZnCl2- H3PO4-H2O systems. Proceedings of the international scientific-practical conference: Auezov reading-8 Scientific achievements are the basis of the cultural and economic development of civilization. M.Auezov SKSU, Shymkent. 9.P.24-29 (in Russian).

[28] Anarbaev A.A., Kabylbekova B.N., Aykozova, L.D., Seitmagzimova G.M. Solubility in quaternary systems FeCl2- H3PO4-H2O and ZnCl2- H3PO4-H2O, Asian J. Chemistry. (in Eng.).

[29] Kazakov A.I., Mokritsky V.A., Romanenko V.N. (1987) Calculation of phase equilibria in multicomponent systems.

Ed. Romanenko V.N. Metallurgy, Moscow (in Russian).

[30] Lazov V.M., Pavlova L.M. (1988) Chemical thermodynamics and phase equilibria. Metallurgy, Moscow (in Russian).

(13)

Publication Ethics and Publication Malpractice

in the journals of the National Academy of Sciences of the Republic of Kazakhstan For information on Ethics in publishing and Ethical guidelines for journal publication see http://www.elsevier.com/publishingethics and http://www.elsevier.com/journal-authors/ethics.

Submission of an article to the National Academy of Sciences of the Republic of Kazakhstan implies that the described work has not been published previously (except in the form of an abstract or as part of a published lecture or academic thesis or as an electronic preprint, see http://www.elsevier.com/postingpolicy), that it is not under consideration for publication elsewhere, that its publication is approved by all authors and tacitly or explicitly by the responsible authorities where the work was carried out, and that, if accepted, it will not be published elsewhere in the same form, in English or in any other language, including electronically without the written consent of the copyright- holder. In particular, translations into English of papers already published in another language are not accepted.

No other forms of scientific misconduct are allowed, such as plagiarism, falsification, fraudulent data, incorrect interpretation of other works, incorrect citations, etc. The National Academy of Sciences of the Republic of Kazakhstan follows the Code of Conduct of the Committee on Publication Ethics (COPE), and follows the COPE Flowcharts for Resolving Cases of Suspected Misconduct (http://publicationethics.org/files/u2/New_Code.pdf). To verify originality, your article may be checked by the Cross Check originality detection service http://www.elsevier.com/editors/plagdetect.

The authors are obliged to participate in peer review process and be ready to provide corrections, clarifications, retractions and apologies when needed. All authors of a paper should have significantly contributed to the research.

The reviewers should provide objective judgments and should point out relevant published works which are not yet cited. Reviewed articles should be treated confidentially. The reviewers will be chosen in such a way that there is no conflict of interests with respect to the research, the authors and/or the research funders.

The editors have complete responsibility and authority to reject or accept a paper, and they will only accept a paper when reasonably certain. They will preserve anonymity of reviewers and promote publication of corrections, clarifications, retractions and apologies when needed. The acceptance of a paper automatically implies the copyright transfer to the National Academy of Sciences of the Republic of Kazakhstan.

The Editorial Board of the National Academy of Sciences of the Republic of Kazakhstan will monitor and safeguard publishing ethics.

(14)

Правила оформления статьи для публикации в журнале смотреть на сайте:

www:nauka-nanrk.kz

http://chemistry-technology.kz/index.php/en/arhiv

 

ISSN 2518-1491 (Online), ISSN 2224-5286 (Print)

Редакторы: М. С. Ахметова, Т. А. Апендиев, Аленов Д.С.

Верстка на компьютере А.М. Кульгинбаевой Подписано в печать 05.02.2019.

Формат 60х881/8. Бумага офсетная. Печать – ризограф.

4,6 п.л. Тираж 300. Заказ 1.

Национальная академия наук РК

050010, Алматы, ул. Шевченко, 28, т. 272-13-18, 272-13-19

Ақпарат көздері

СӘЙКЕС КЕЛЕТІН ҚҰЖАТТАР

Ispolinov A.S. Doctor of Juridical Sciences, Prof., Lomonosov Moscow State University, Moscow, Russia Kala N.S. Gumilyov Eurasian National University, Nur-Sultan, Kazakhstan..

Abaydeldinov E.M. Doctor of Juridical Sciences, Prof., L.N. Gumilyov Eurasian National University, Nur-Sultan, Kazakhstan.. Abdilov K.S. Gumilyov Eurasian National

В заключении доклада Республика Кыргы- зстан указала, что «Кыргызская Республика нуждалась в создании эффективного механиз- ма по выполнению

«Кәмелетке толмағандар арасындағы құқық бұзушылықтардың профилактикасы мен балалардың қадағалаусыз және панасыз қалуының алдын алу туралы» ҚР Заңына (2004

Моральдық білім беруді әр ғалым түрлі бағытта зерттеп, қоғамтану, психология, педагогикалық білім беру және дінтану ғылымдарымен байланыстыра зерттеп,

Қашқари, «Диуани лұғат-ат-түрік», ойын, шөген, жамбы ату, ат жарыс, балалар ойындары: асық ату, жаңғақ

The integration processes within the framework of the EAEU have been discussed, the interests of the states in the energy sector are characterized by the development of long-

Zhaslan Nurbayev Candidate of Historical Sciences (Kazakhstan), Roza Nurtazina Doctor of Political Sciences, Prof.. (Kazakhstan) Aigerim Ospanova