• Ешқандай Нәтиже Табылған Жоқ

On the Reduction of the Linear System of the Differential Equations with coefficients of oscillating type to the Triangular Kind in the Non-resonant Case

N/A
N/A
Protected

Academic year: 2022

Share "On the Reduction of the Linear System of the Differential Equations with coefficients of oscillating type to the Triangular Kind in the Non-resonant Case"

Copied!
11
0
0

Толық мәтін

(1)

http://bulmathmc.enu.kz, E-mail: vest_math@enu.kz

МРНТИ:27.29.23

S.A. Shchogolev

Odessa I.I. Mechnikov National University, Odessa, Ukraine (E-mail: sergas1959@gmail.com)

On the Reduction of the Linear System of the Differential Equations with coefficients of oscillating type to the Triangular Kind in the Non-resonant Case

Abstract: For the linear homogeneous differential system, whose coefficients are represented as an absolutely and uniformly convergent Fourier-series with slowly varying coefficients and frequency, the conditions of the existence of the transformation which leads it to triangular kind, are obtained in the non-resonant cases.

Keywords: linear differential systems, Fourier series.

DOI: https://doi.org/10.32523/2616-7182/2020-130-1-82-92 Introduction. In the theory of linear systems of differential equations is well known problem of the consruction for the linear homogeneous system of the differential equations

dx

dt =A(t)x, (1)

where x= colon(x1, ..., xn), A(t) = (ajk(t))j,k=1,n, Lyapunov’s transformation x=L(t)y,

which leads the system (1) to the triangular kind dy

dt =T(t)y, where T(t) = (bjk(t))j,k=1,n, bjk(t)≡0 (j < k) [1–4].

In this paper, we assume, that the system (1) already reduced to a kind, close to triangular:

dx

dt = (T(t) +µP(t))x, (2)

where µ – small parameter, and the matrix P(t) has a some special kind. And we study the problem on bringing the system (2) to a purely triangular form

dy

dt =D(t)y, where D(t) = (djk(t))j,k=1,n, djk ≡0 (j < k).

Basic notations and definitions.

Let G(ε0) ={t, ε: 0< ε < ε0, t∈R}.

Definition 1. We say, that a function p(t, ε) belongs to a class S(m;ε0) (m∈N∪ {0}), if

1) p:G(ε0)→C, 2) p(t, ε)∈Cm(G(ε0)) with respect t; 3) dkp(t, ε)/dtkkpk(t, ε) (0≤k≤m),

kpkS(m;ε0)def=

m

X

k=0

sup

G(ε0)

|pk(t, ε)|<+∞.

Under the slowly varying function we mean the function of the class S(m;ε0).

82

(2)

Definition 2. We say, that a function f(t, ε, θ(t, ε)) belongs to a class F(m;ε0;θ) (m ∈ N∪ {0}), if this function can be represented as:

f(t, ε, θ(t, ε)) =

X

n=−∞

fn(t, ε) exp (inθ(t, ε)), and:

1) fn(t, ε)∈S(m;ε0); 2)

kfkF(m;ε0;θ) def=

X

n=−∞

kfnkS(m;ε0) <+∞, 3) θ(t, ε) =

t

R

0

ϕ(τ, ε)dτ, ϕ(t, ε)∈R+, ϕ(t, ε)∈S(m;ε0), inf

G(ε0)ϕ(t, ε) =ϕ0 >0.

State some properties of the functions of the classes S(m;ε0), F0(m;ε0;θ) (the proofs are given in [5]). Let k= const, p, q∈S(m;ε0), u, v∈F(m;ε0;θ). Then kp, p±q, pq belongs to the class S(m;ε0), ku, u±v, uv belongs to the class F0(m;ε0;θ), and

1) kkpkS(m;ε0)=|k| · kpkS(m;ε0).

2) kp±qkS(m;ε0) ≤ kpkS(m;ε0)+kqkS0(m,ε0). 3) kpqkS(m;ε0) ≤2mkpkS(m;ε0)kqkS0(m;ε0). 4) kkukF(m;ε0;θ)=|k| · kukF(m;ε0;θ).

5) ku±vkF(m;ε0;θ) ≤ kukF(m;ε0;θ)+kvkF(m;ε0;θ). 6) kuvkF(m;ε0;θ) ≤2mkukF(m;ε0;θ)· kvkF(m;ε0;θ). For f(t, ε, θ)∈F(m;ε0;θ) we denote:

Γn[f] = 1 2π

Z

0

f(t, ε, θ) exp(−inθ)dθ (n∈Z).

In particular

Γ0[f] = 1 2π

Z

0

f(t, ε, θ)dθ.

Definition 3. For the vector u= colon(u1, . . . , un) with elements from the class F(m;ε0;θ) we define the norm:

kukF(m;ε

0;θ)=

n

X

k=1

kukkF(m;ε0;θ).

Statement of the Problem. We consider the next system of differential equations:

dx

dt = (B(t, ε) +µP(t, ε, θ))x, (3)

where x= colon(x1, ..., xn), B(t, ε) – lower triangular matrix with the elements from S(m;ε0), and P(t, ε, θ) = (pjk(t, ε, θ))j,k=1,n, pjk(t, ε, θ) ∈ F(m;ε0;θ) (j, k = 1, n), µ∈ (0, µ0) – the real parameter.

We study the problem of the existence of a transformation of kind

x= (En+µΨ(t, ε, θ, µ))y, (4)

y= colon(y1, ..., yn), En – unit matrix of order n, Ψ – matrix with elements from F(l;ε1;θ) (0< l1 ≤m, 0< ε1 < ε0), which leads at sufficiently small µ the system (3) to the kind:

dy

dt =K(t, ε, θ, µ))y, (5)

where K = (kjk(t, ε, θ, µ))j,k=1,n, kjk ≡0 (j < k), kjk(t, ε, θ, µ)∈F(l;ε1;θ).

We will study this problem for a third-order system (n = 3) so as not to clutter up the presentation with secondary technical difficulties associated with the dimension of the system.

All fundamental difficulties take place in this case too.

Bulletin of L.N. Gumilyov ENU. Mathematics. Computer science. Mechanics series, 2020, Vol. 130, №1

(3)

So, consider the system of the differential equations:

dx

dt = (B(t, ε) +µP(t, ε, θ))x, (6)

x= colon(x1, x2, x3),

B(t, ε) =

b11(t, ε) 0 0 b21(t, ε) b22(t, ε) 0 b31(t, ε) b32(t, ε) b33(t, ε)

,

bjk(t, ε) ∈ S(m;ε0) (j, k = 1,2,3;j ≥ k), P(t, ε, θ) = (pjk(t, ε, θ))j,k=1,2,3, pjk(t, ε, θ) ∈ F(m;ε0;θ).

Auxiliary results.

Lemma 1. Let we have the system dv

dt = A(t, ε) +

q

X

l=1

Ql(t, ε, θ)µl

!

v, (7)

x= colon(x1, x2, x3), q∈N, A(t, ε) =

im12(t, ε) −c32(t, ε) 0 0 im13(t, ε) 0 0 c21(t, ε) im23(t, ε)

mjk(t, ε)∈S(m;ε0), mjk(t, ε)∈R, cjk(t, ε)∈S(m;ε0),and inf

G(ε0)

|m13(t, ε)−m12(t, ε)−nϕ(t, ε)| ≥γ >0, inf

G(ε0)

|m23(t, ε)−m12(t, ε)−nϕ(t, ε)| ≥γ >0, (8) inf

G(ε0)

|m13(t, ε)−m23(t, ε)−nϕ(t, ε)| ≥γ >0,

n ∈ Z, ϕ(t, ε) – the function in the definition of class F(m;ε0;θ), the elements of matrices Ql (l= 1, q) belongs to the class F(m;ε0;θ).

Then there exists µ1 ∈ (0, µ0), such that for all µ ∈ (0, µ1) there exists the Lyapunov’s transformation of kind

v = E+

q

X

l=1

Ψl(t, ε, θ)µl

!

w, (9)

where elemens of matrices Ψl(t, ε, θ) (l = 1, q) belongs to the class F(m;ε0;θ), which leads the system (7) to kind:

dw

dt = A(t, ε) +

q

X

l=1

Ul(t, ε)µl

q

X

l=1

Vl(t, ε, θ)µlq+1W(t, ε, θ, µ)

!

w, (10)

where Ul(t, ε) – the matrices with elements from S(m;ε0), Vl, W – the matrices with elements from F(m−1;ε0;θ).

Proof. We substitute the expression (9) into system (7), and require that the transformed system has the kind (10). We obtain the next chain of matrix differential equations for detemi- ning matrices Ψ1, ...,Ψq:

1

dt =A(t, ε)Ψ1−Ψ1A(t, ε) +Q1(t, ε, θ)−U1(t, ε)−εV1(t, ε, θ), (11) dΨl

dt =A(t, ε)Ψl−ΨlA(t, ε) +Ql(t, ε, θ)−

l−1

X

ν=1

QνΨl−ν

l−1

X

ν=1

ΨνUl−ν(t, ε)−ε

l−1

X

ν=1

ΨνVl−ν(t, ε, θ)−Ul(t, ε)−εVl(t, ε, θ), l= 2, q. (12) where Ψl= (ψjkl )j,k=1,2,3, Ql = (qljk)j,k=1,2,3, Ul= (uljk)j,k=1,2,3, Vl= (vljk)j,k=1,2,3 (l= 1, q).

Л.Н. Гумилев атындағы ЕҰУ Хабаршысы. Математика. Компьютерлiк ғылымдар. Механика сериясы, 2020, Том 130, №1

(4)

Then the matrix W at sufficiently small values µ is determined from the equation:

E+

q

X

l=1

Ψlµl

!

W =

q−1

X

s=0

 X

σ+δ=s+q+1

(QσΨδ−ΨσUδ

µs

q−1

X

s=0

 X

σ+δ=s+q+1

ΨσVδ

µs. (13) We consider the equation (11). In the component it looks like this:

111

dt =−c32(t, ε)ψ211 +q111(t, ε, θ)−u111(t, ε)−εv111 (t, ε, θ),

112

dt =i(m12(t, ε)−m13(t, ε))ψ112−c32(t, ε)(ψ221 −ψ111 )−c21(t, ε)ψ113+ +q112(t, ε, θ)−u112(t, ε)−εv121 (t, ε, θ),

113

dt =i(m12(t, ε)−m23(t, ε))ψ131 −c32(t, ε)ψ231 + +q113(t, ε, θ)−u113(t, ε)−εv131 (t, ε, θ),

211

dt =i(m13(t, ε)−m12(t, ε))ψ211 +q211 (t, ε, θ)−u121(t, ε)−εv211 (t, ε, θ),

122

dt =c32(t, ε)ψ121−c21(t, ε)ψ132+q122(t, ε, θ)−u111(t, ε)−εv221 (t, ε, θ),

231

dt =i(m13(t, ε)−m23(t, ε))ψ231 +q231 (t, ε, θ)−u123(t, ε)−εv231 (t, ε, θ),

131

dt =i(m23(t, ε)−m12(t, ε))ψ311 +c21(t, ε)ψ211 + +q131(t, ε, θ)−u131(t, ε)−εv311 (t, ε, θ),

132

dt =i(m23(t, ε)−m13(t, ε))ψ132+c21(t, ε)(ψ211 −ψ331 ) +c32(t, ε)ψ131+ +q132(t, ε, θ)−u132(t, ε)−εv321 (t, ε, θ),

133

dt =c21(t, ε)ψ123+q133(t, ε, θ)−u133(t, ε)−εv133(t, ε, θ).

(14)

Define ψjk1 , u1jk, vjk1 by the following expression:

ψ121(t, ε, θ) =−

X

n=−∞

Γn[q121(t, ε, θ)]

i(m13(t, ε)−m12(t, ε)−nϕ(t, ε)) einθ(t,ε), u121(t, ε)≡0,

v211 (t, ε, θ) = 1 ε

X

n=−∞

d dt

Γn[q211 (t, ε, θ)]

i(m13(t, ε)−m12(t, ε)−nϕ(t, ε))

einθ(t,ε), ψ111 (t, ε, θ) =

X

n=−∞

(n6=0)

Γn[q111 (t, ε, θ)−c32(t, ε)ψ211 (t, ε, θ)]

inϕ(t, ε) einθ(t,ε),

u111(t, ε) = Γ0[q111(t, ε, θ)−c32(t, ε)ψ211 (t, ε, θ)], v111 (t, ε, θ) =−1

ε

X

n=−∞

(n6=0)

d dt

Γn[q111 (t, ε, θ)−c32(t, ε)ψ211 (t, ε, θ)]

inϕ(t, ε)

einθ(t,ε),

Bulletin of L.N. Gumilyov ENU. Mathematics. Computer science. Mechanics series, 2020, Vol. 130, №1

(5)

ψ311 (t, ε, θ) =−

X

n=−∞

Γn[q311 (t, ε, θ) +c21(t, ε)ψ211 (t, ε, θ)]

i(m23(t, ε)−m12(t, ε)−nϕ(t, ε)) einθ(t,ε), u131(t, ε)≡0,

v311 (t, ε, θ) = 1 ε

X

n=−∞

d dt

Γn[q311 (t, ε, θ) +c21(t, ε)ψ211 (t, ε, θ)]

i(m13(t, ε)−m12(t, ε)−nϕ(t, ε))

einθ(t,ε), ψ123(t, ε, θ) =−

X

n=−∞

Γn[q123(t, ε, θ)]

i(m13(t, ε)−m23(t, ε)−nϕ(t, ε)) einθ(t,ε), u123(t, ε)≡0,

v231 (t, ε, θ) = 1 ε

X

n=−∞

d dt

Γn[q231 (t, ε, θ)]

i(m13(t, ε)−m23(t, ε)−nϕ(t, ε))

einθ(t,ε), ψ331 (t, ε, θ) =

X

n=−∞

(n6=0)

Γn[q331 (t, ε, θ) +c21(t, ε)ψ231 (t, ε, θ)]

inϕ(t, ε) einθ(t,ε),

u133(t, ε) = Γ0[q133(t, ε, θ) +c21(t, ε)ψ231 (t, ε, θ)], v331 (t, ε, θ) =−1

ε

X

n=−∞

(n6=0)

d dt

Γn[q331 (t, ε, θ) +c21(t, ε)ψ231 (t, ε, θ)]

inϕ(t, ε)

einθ(t,ε),

ψ122(t, ε, θ) =

X

n=−∞

(n6=0)

Γn[q122(t, ε, θ) +c32(t, ε)ψ121(t, ε, θ)−c21(t, ε)ψ123(t, ε, θ)]

inϕ(t, ε) einθ(t,ε),

u122(t, ε) = Γ0[q221 (t, ε, θ) +c32(t, ε)ψ211 (t, ε, θ)−c21(t, ε)ψ123(t, ε, θ)], v221 (t, ε, θ) =−1

ε

X

n=−∞

(n6=0)

d dt

Γn[q122(t, ε, θ) +c32(t, ε)ψ121(t, ε, θ)−c21(t, ε)ψ123(t, ε, θ)]

inϕ(t, ε)

einθ(t,ε),

ψ321 (t, ε, θ) =−

X

n=−∞

Γn[q321 (t, ε, θ) +c21(t, ε)(ψ122−ψ133) +c32(t, ε)ψ311 ]

i(m23(t, ε)−m13(t, ε)−nϕ(t, ε)) einθ(t,ε), u132(t, ε)≡0,

v321 (t, ε, θ) = 1 ε

X

n=−∞

d dt

Γn[q132(t, ε, θ) +c21(t, ε)(ψ221 −ψ331 ) +c32(t, ε)ψ311 ] i(m23(t, ε)−m13(t, ε)−nϕ(t, ε))

einθ(t,ε), ψ131 (t, ε, θ) =−

X

n=−∞

Γn[q131 (t, ε, θ)−c32(t, ε)ψ231 (t, ε, θ)]

i(m12(t, ε)−m23(t, ε)−nϕ(t, ε)) einθ(t,ε), u113(t, ε)≡0,

v131 (t, ε, θ) = 1 ε

X

n=−∞

d dt

Γn[q131 (t, ε, θ)−c32(t, ε)ψ231 (t, ε, θ)]

i(m12(t, ε)−m23(t, ε)−nϕ(t, ε))

einθ(t,ε), ψ121 (t, ε, θ) =−

X

n=−∞

Γn[q121 (t, ε, θ)−c32(t, ε)(ψ122−ψ111)−c21(t, ε)ψ131 ]

i(m12(t, ε)−m13(t, ε)−nϕ(t, ε)) einθ(t,ε), u112(t, ε)≡0,

v121 (t, ε, θ) = 1 ε

X

n=−∞

d dt

Γn[q112(t, ε, θ)−c32(t, ε)(ψ221 −ψ111 )−c21(t, ε)ψ131 ] i(m12(t, ε)−m13(t, ε)−nϕ(t, ε))

einθ(t,ε). All the elements of matrix U1 belongs to the class S(m;ε0). All the elements of matrix Ψ1

belongs to the class F(m;ε0;θ). All the elements of matrix V1 belongs to the class F(m− 1;ε0;θ).

Л.Н. Гумилев атындағы ЕҰУ Хабаршысы. Математика. Компьютерлiк ғылымдар. Механика сериясы, 2020, Том 130, №1

(6)

All the equations (12) are considered similarly to equations (11), and so the matrices Ψl, Ul, Vl (l= 1, q) are determined. And also all the elements of matrix Ψl belongs to the class F(m;ε0;θ), all the elements of matrix Ul belongs to the class S(m;ε0), all the elements of matrix Vl belongs to the class F(m−1;ε0;θ) (l= 1, q). Matrix W are determined from the equations (13).

Lemma 1 are proved.

Problem solving method and basic results.

We seek the transformation of the kind:

x= (E3+µΨ(t, ε, θ, µ))y, (15)

y= colon(y1, y2, y3), E3 – unit matrix of third order, Ψ(t, ε, θ, µ) =

0 ψ12(t, ε, θ, µ) ψ13(t, ε, θ, µ) 0 0 ψ23(t, ε, θ, µ)

0 0 0

,

ψjk ∈F(m11;θ) (0≤l1 ≤m; 0≤ε1< ε0), which leads the system (6) to the kind:

dy

dt = (B(t, ε) +µD(t, ε, θ, µ))y, (16)

where

D(t, ε, θ, µ) =

d11(t, ε, θ, µ) 0 0

d21(t, ε, θ, µ) d22(t, ε, θ, µ) 0 d31(t, ε, θ, µ) d32(t, ε, θ, µ) d33(t, ε, θ, µ)

.

We substitute the expression (15) into system (6), and require that the transformed system has the kind (16). We obtain the next system of the differential equations for detemining ψ12, ψ13, ψ23:

12

dt =K12(t, ε, θ, ψ12, ψ13, ψ23, µ),

13

dt =K13(t, ε, θ, ψ12, ψ13, ψ23, µ),

23

dt =K23(t, ε, θ, ψ12, ψ13, ψ23, µ),

(17)

where

K12= (b11(t, ε)−b22(t, ε))ψ12−b32(t, ε)ψ13+p12(t, ε, θ)+

+ +µb21(t, ε)ψ122 +µb32(t, ε)ψ12ψ23

−µ2p21(t, ε, θ)ψ1222b31(t, ε)ψ122 ψ232p32(t, ε, θ)ψ12ψ23+

2b31(t, ε)ψ12ψ132p32(t, ε, θ)ψ133p31(t, ε, θ)ψ122 ψ233p31(t, ε, θ)ψ12ψ13, K13= (b11(t, ε)−b33(t, ε))ψ13+p13(t, ε, θ) +µ(p11(t, ε, θ)−p33(t, ε, θ))ψ13+

+µp12(t, ε, θ)ψ23−µb13(t, ε)ψ132 −µb32(t, ε)ψ13ψ23

−µ2p31(t, ε, θ)ψ132 −µ2p32(t, ε, θ)ψ13ψ23,

K23= (b22(t, ε)−b33(t, ε))ψ23+b21(t, ε)ψ13+p23(t, ε, θ) +µp21(t, ε, θ)ψ12+ +µ(p22(t, ε, θ)−p33(t, ε, θ))ψ23−µb31(t, ε)ψ13ψ23

−µb32(t, ε)ψ232 −µ2p31(t, ε, θ)ψ13ψ23−µ2p32(t, ε, θ)ψ223. In this case djk(t, ε, θ, µ) (j ≥k) has a kind:

d31(t, ε, θ) =p31(t, ε, θ),

d32(t, ε, θ, µ) =p32(t, ε, θ) +b31(t, ε)ψ12+µp31(t, ε, θ)ψ12,

d33(t, ε, θ, µ) =p33(t, ε, θ) +b31(t, ε)ψ13+b32(t, ε)ψ23+µ(p31(t, ε, θ)ψ13+p32(t, ε, θ)ψ23), d21(t, ε, θ, µ) =p21(t, ε, θ)−b31(t, ε)ψ13−µp31(t, ε, θ)ψ23,

d22(t, ε, θ, µ) =p22(t, ε, θ)−b21(t, ε)ψ12−b32(t, ε)ψ23+µp21(t, ε, θ)ψ12−µd32(t, ε, θ, µ)ψ23, d11(t, ε, θ, µ) =p11(t, ε, θ)−b21(t, ε)ψ12−b31(t, ε)ψ13−µ(d21(t, ε, θ, µ)ψ12+p31(t, ε, θ)ψ13). (18)

The case 1. |Re(bjj(t, ε)−bkk(t, ε))| ≥γ >0 (j6=k). From the results of the paper [6] follows the theorems.

Bulletin of L.N. Gumilyov ENU. Mathematics. Computer science. Mechanics series, 2020, Vol. 130, №1

(7)

Theorem 1. In the case 1 there exists µ1 ∈(0, µ0) such that for all µ∈(0, µ1) there exists unique particular solution ψjk(t, ε, θ, µ) (j < k) of the system (17), all the components of which belongs to the class F(m;ε0;θ).

Theorem 2. In the case 1 there exists µ1 ∈(0, µ0) such that for all µ∈(0, µ1) there exists the transformation of the kind (15), whose coefficients ψjk(t, ε, θ, µ) (j < k) belongs to the class F(m;ε0;θ), which leads the system (6) to the triangular kind (16), where djk(t, ε, θ, µ) (j≥k) are determined by the formulas (18).

The case 2. bjj(t, ε)−bkk(t, ε) =imjk(t, ε), mjk ∈R, inf

G(ε0)

|mjk(t, ε)−nϕ(t, ε)| ≥γ >0 ∀n∈Z.

Together with the system (17) we consider the auxiliary system:

ϕ(t, ε)12 =K12(t, ε, θ, ψ12, ψ13, ψ23, µ), ϕ(t, ε)13 =K13(t, ε, θ, ψ12, ψ13, ψ23, µ), ϕ(t, ε)23 =K23(t, ε, θ, ψ12, ψ13, ψ23, µ),

(19)

where ϕ(t, ε) – function in the definition of the class F(m;ε0;θ), and t, ε are considered as constant. Using the method of the small parameter of Poincarais [7], we construct the partial sums of the series in degrees of the small parameter representing the 2π-periodic with respect to θ solution of the system (19):

ψjk(t, ε, θ, µ) =ψ0jk(t, ε, θ) +µψ1jk(t, ε, θ) +. . .+µ2q−1ψjk2q−1(t, ε, θ), (20) where ψsjk(t, ε, θ) (s= 0,2q−1) – 2π-periodic with respect to θ functions. Regarding these functions, we obtain the chain of the system of the differential equations:

ϕ(t, ε)012 =im12(t, ε)ψ120 −b32(t, ε)ψ130 +p12(t, ε, θ), ϕ(t, ε)130 =im13(t, ε)ψ130 +p13(t, ε, θ), ϕ(t, ε)023 =im23(t, ε)ψ230 +b21(t, ε)ψ130 +p23(t, ε, θ),

(21)

ϕ(t, ε)12s =im12(t, ε)ψ12s −b32(t, ε)ψ13s + +P12s(t, ε, θ, ψ012, ψ130 , ψ023, . . . , ψ12s−1, ψs−113 , ψs−123 ),

ϕ(t, ε)13s =im13(t, ε)ψ130 +

+Qs13(t, ε, θ, ψ120 , ψ130 , ψ023, . . . , ψ12s−1, ψs−113 , ψ23s−1), ϕ(t, ε)23s =im23(t, ε)ψ23s +b21(t, ε)ψ13s +

+Rs23(t, ε, θ, ψ012, ψ130 , ψ230 , . . . , ψs−112 , ψ13s−1, ψs−123 ), s= 1,2, . . . ,2q−1.

(22)

P12s, Qs13, Rs23 – polynomials from ψ120 , . . . , ψs−123 with coefficients from the class F(m;ε0;θ). Consider a generating system (21). In the case 2 this system has unique 2π-periodic with respect to θ solution:

ψ130 (t, ε, θ) =

X

n=−∞

ψ13,n0 (t, ε) exp(inθ), where

ψ13,n0 (t, ε) =− Γn[p13(t, ε, θ)]

i(m13(t, ε)−nϕ(t, ε)),

Л.Н. Гумилев атындағы ЕҰУ Хабаршысы. Математика. Компьютерлiк ғылымдар. Механика сериясы, 2020, Том 130, №1

(8)

ψ120 (t, ε, θ) =

X

n=−∞

ψ12,n0 (t, ε) exp(inθ), where

ψ012,n(t, ε) =−Γn[p12(t, ε, θ)]−b32(t, ε)ψ13,n0 (t, ε) i(m12(t, ε)−nϕ(t, ε)) , ψ230 (t, ε, θ) =

X

n=−∞

ψ23,n0 (t, ε) exp(inθ), where

ψ023,n(t, ε) =−Γn[p23(t, ε, θ)] +b21(t, ε)ψ13,n0 (t, ε) i(m23(t, ε)−nϕ(t, ε)) , and ψ130 (t, ε, θ), ψ120 (t, ε, θ), ψ230 (t, ε, θ) belongs to the class F(m;ε0;θ).

Similarly, all systems in the chain (22) also have a unique 2π-periodic with respect to θ solutions, and all components of theese solutions belongs to the class F(m;ε0;θ).

Consequently, the functions ψjk(t, ε, θ, µ) belongs to the class F(m;ε0;θ) also.

We make in the system (17) the substitution:

ψjkjk (t, ε, θ, µ) +ξjk (j < k). (23) We obtain:

12

dt =im12(t, ε)ξ12−b32(t, ε)ξ13+εg12(t, ε, θ, µ)+

2qc12(t, ε, θ, µ) +

q

X

l=1

b12l(t, ε, θ)µl

! ξ12+

q

X

l=1

c12l(t, ε, θ)µl

! ξ13+ +

q

X

l=1

d12l(t, ε, θ)µl

!

ξ23q+112(t, ε, θ, µ)ξ1212(t, ε, θ, µ)ξ13+ +γ12(t, ε, θ, µ)ξ23) +µΞ12(t, ε, θ, ξ12, ξ13, ξ23, µ),

13

dt =im13(t, ε)ξ13+εg13(t, ε, θ, µ)+

2qc13(t, ε, θ, µ) +

q

X

l=1

b13l(t, ε, θ)µl

! ξ12+

q

X

l=1

c13l(t, ε, θ)µl

! ξ13+ +

q

X

l=1

d13l(t, ε, θ)µl

!

ξ23q+113(t, ε, θ, µ)ξ1213(t, ε, θ, µ)ξ13+ +γ13(t, ε, θ, µ)ξ23) +µΞ13(t, ε, θ, ξ12, ξ13, ξ23, µ),

23

dt =im23(t, ε)ξ23+b21(t, ε)ξ13+εg23(t, ε, θ, µ)+

2qc23(t, ε, θ, µ) +

q

X

l=1

b23l(t, ε, θ)µl

! ξ12+

q

X

l=1

c23l(t, ε, θ)µl

! ξ13+ +

q

X

l=1

d23l(t, ε, θ)µl

!

ξ23q+123(t, ε, θ, µ)ξ1223(t, ε, θ, µ)ξ13+

23(t, ε, θ, µ)ξ23) +µΞ23(t, ε, θ, ξ12, ξ13, ξ23, µ), (24) where g12, g13, g23∈F(m−1;ε0;θ), c12, c13, c23, bjkl, cjkl, djkl, αjk, βjk,

γjk ∈F(m;ε0;θ) (j < k), Ξ121323 – polynomials with respect to ξ12, ξ13, ξ23 with coef- ficients from the class F(m;ε0;θ), containing terms not lower than second order with respect ξ12, ξ13, ξ23.

We introduce ξ = colon(ξ12, ξ13, ξ23), A1(t, ε) =

im12(t, ε) −b32t, ε) 0 0 im13(t, ε) 0 0 b21(t, ε) im23(t, ε)

,

Bulletin of L.N. Gumilyov ENU. Mathematics. Computer science. Mechanics series, 2020, Vol. 130, №1

(9)

g(t, ε, θ, µ) = colon(g12(t, ε, θ, µ), g13(t, ε, θ, µ), g23(t, ε, θ, µ)), c(t, ε, θ, µ) = colon(c12(t, ε, θ, µ), c13(t, ε, θ, µ), c23(t, ε, θ, µ)),

Kl(t, ε, θ) =

b12l(t, ε, θ) c12lt, ε, θ) d12lt, ε, θ) b13l(t, ε, θ) c13l(t, ε, θ) d13l(t, ε, θ) b23l(t, ε, θ) c23l(t, ε, θ) d23l(t, ε, θ)

,

L(t, ε, θ, µ) =

α12(t, ε, θ, µ) β12t, ε, θ, µ) γ12t, ε, θ, µ) α13(t, ε, θ, µ) β13t, ε, θ, µ) γ13t, ε, θ, µ) α23(t, ε, θ, µ) β23t, ε, θ, µ) γ23t, ε, θ, µ)

, Ξ(t, ε, θ, ξ, µ) = colon(Ξ12(t, ε, θ, ξ12, ξ13, ξ23, µ),Ξ13(t, ε, θ, ξ12, ξ13, ξ23, µ), Ξ23(t, ε, θ, ξ12, ξ13, ξ23, µ)).

Then the system (24) can be written as:

dt = A1(t, ε) +

q

X

l=1

Kl(t, ε, θ)µl

!

ξ+εg(t, ε, θ, µ) +µ2qc(t, ε, θ, µ)+

q+1L(t, ε, θ, µ)ξ+ Ξ(t, ε, θ, ξ, µ). (25)

Based on Lemma 1, using the conditions (8) and the transformation of kind:

ξ= E+

q

X

l=1

Ψl(t, ε, θ)µl

!

η, (26)

where η= colon(η1, η2, η3), we leads the system (25) to the kind:

dt = A1(t, ε) +

q

X

l=1

Ul(t, ε)µl

!

η+εg1(t, ε, θ, µ) +µ2qc1(t, ε, θ, µ)+

q

X

l=1

Vl(t, ε, θ)µl

!

η+µq+1L1(t, ε, θ, µ) +µH(t, ε, θ, η, µ), (27) where Ul(t, ε) = diag(u1l(t, ε), u2l(t, ε), u3l(t, ε)), and ujl(t, ε)∈S(m;ε0) (j= 1,2,3; l= 1, q).

Lemma 2. Let the system (27) satisfy the next conditions: 1) the eigenvalues λj(t, ε, µ) (j = 1,2,3) of the matrix

U(t, ε, µ) =A1(t, ε) +

q

X

l=1

Ul(t, ε)µl such that

inf

G(ε0)

|Reλj(t, ε, θ)| ≥γ0µq00 ≥0, 0< q0 ≤q);

2) for the matrix U(t, ε, µ) there exists the matrix Y(t, ε, µ) such that a) inf

G(ε0)

|detY(t, ε, µ)|>0,

b) Y−1U Y = Λ(t, ε, µ) – diagonal matrix.

Then there exists µ2 ∈ (0, µ0), ε1(µ) ∈ (0, ε0) such that for all µ ∈ (0, µ2) and for all ε∈(0, ε1(µ)) there exists the particular solution of the system (27), all the components of which belongs to the class F(m−1;ε1(µ);θ).

Proof. Based on condition 2) of Lemma, we make in the system (27) the substitution:

η= ε+µ2q

µq0 Y(t, ε, µ)χ. (28)

We obtain:

dt = Λ(t, ε, µ)χ+ εµq0

ε+µ2q g2(t, ε, θ, µ) + µ2q+q0

ε+µ2q c2(t, ε, θ, µ)+

+εA2(t, ε, θ, µ)χ+µq+1C(t, ε, θ, µ)χ+ε+µ2q

µq0−1 X(t, ε, θ, χ, µ), (29)

Л.Н. Гумилев атындағы ЕҰУ Хабаршысы. Математика. Компьютерлiк ғылымдар. Механика сериясы, 2020, Том 130, №1

(10)

where elements of vector g2 and matrix A2 belongs to the class F(m−1;ε0;θ), elements of vector c2 and matrix C belongs to the class F(m;ε0;θ), elements of vector-function X belongs to the class F(m;ε0;θ) in respect to t, ε, θ and polynomials in respect to elements of vector χ.

Together with the system (29) we consider the linear nonhomogeneous system:

0

dt = Λ(t, ε, µ)χ0+ εµq0

ε+µ2q g2(t, ε, θ, µ) + µ2q+q0

ε+µ2q c2(t, ε, θ, µ). (30) From the results of the paper [6], based on conditions 1) of Lemma, we obtain, that there exists particular solution χ0(t, ε, θ, µ) of the system (30), all elements of which belongs to the class F(m−1;ε0;θ), and there exists K∈(0,+∞) such that:

0kF(m−1;ε

0;θ) ≤ K γµq0

εµq0

ε+µ2q kg2kF(m−1;ε

0;θ)+ µ2q+q0

ε+µ2q kc2kF(m−1;ε

0;θ)

<

< K γ

kg2kF(m−1;ε

0;θ)+kc2kF(m−1;ε

0;θ)

.

We construct the process of succesive approximation, defininng as initial approximation χ0, and subsequent approximations defining as solutions from the class F(m−1;ε0;θ) of the sys- tems:

j+1

dt = Λ(t, ε, µ)χj+1+ εµq0

ε+µ2q g2(t, ε, θ, µ) + µ2q+q0

ε+µ2q c2(t, ε, θ, µ)+

+εA2(t, ε, θ, µ)χjq+1C(t, ε, θ, µ)χj+ ε+µ2q

µq0−1 X(t, ε, θ, χj, µ), j= 0,1,2, .... (31) Using an usual techniques contraction mapping principle [8] it is easy to show that there exists µ3∈(0, µ0) and ε1(µ) =K2µ, where K2 – sufficiently small constant, such that for all µ∈(0, µ3) and for all ε∈(0, ε1(µ)) the process (31) converges to the solution χ(t, ε, θ, µ) of the system (29), and all components of this solution belongs to the class F(m−1;ε1(µ);θ).

Lemma 2 are proved.

The following statements are an immediate consequences of Lemma 2.

Lemma 3. Let the system (17) be such that:

1) conditions (8) are satisfies;

2) for the system (27), obtained from the system (17) using the transformation (23), (26), all conditions of Lemma 2 are satisfies.

Then there exists µ4 ∈ (0, µ0), ε2(µ) ∈ (0, ε0) such that for all µ ∈ (0, µ4) and for all ε∈(0, ε2(µ)) there exists the particular solution of the system (17), all the components of which belongs to the class F(m−1;ε2(µ);θ).

Theorem 3. Let the system (17) satisfies all conditions of Lemma 3. Then in the case 2 there exists µ4 ∈(0, µ0), ε2(µ)∈(0, µ0) such that for all µ∈(0, µ4) and for all ε∈(0, ε2(µ)) there exists the transformation of the kind (15), whose coefficients ψjk(t, ε, θ, µ) (j < k) belongs to the class F(m−1;ε2(µ);θ), which leads the system (6) to a triangular kind (16), where djk(t, ε, θ, µ) (j≥k) are determines by the formulas (18).

Conclusions. Thus, for the system (2) the conditions of the existence of the transformation with coefficients are represented as an absolutely and uniformly convergent Fourier-series with slowly varying coefficients and frequency, which leads it to triangular kind, are obtained in the non-resonant cases.

References

1 Perron O. Uber eine Matrixtransformation// Math. Zeitschr. – 1930. – V.32. – pp. 465–473.

2 Персидский К.П. О характеристичных числах дифференциальных уравнений // Изв. АН КазССР, сер.

матем. и механ. – 1947, вып. 1. – P. 5–47.

Bulletin of L.N. Gumilyov ENU. Mathematics. Computer science. Mechanics series, 2020, Vol. 130, №1

(11)

3 Изобов Н. А. О канонической форме линейной двумерной дифференциальной системы // Дифференц.

уравн. – 1971. – Т. 7, № 12. – С. 2136–2142.

4 Костин А. В. Устойчивость и асимптотика квазилинейных неавтономных дифференциальных систем.

Одесса, ОГУ, 1984. – 95 с.

5 Щоголев С.А. Деякi задачi теорiї коливань для диференцiальних систем, якi мiстять повiльно змiннi параметри. Дисертацiя на здобуття наукового ступеня доктора фiзико-математичних наук. Київ, 2012.

– 290 с.

6 Костин А.В., Щёголев С.А. Об устойчивости колебаний, представимых рядами Фурье с медленно меняющимися параметрами // Дифференц. уравн. – 2008. – Т. 44, № 1. – С. 45 – 51.

7 Малкин И. Г. Некоторые задачи теории нелинейных колебаний. – М.: Гостехиздат, 1956. – 491 с.

8 Треногин В. А. Функциональный анализ. М.: Наука, 1980. – 496 с.

С.А. Щёголев

И.И. Мечников атындағы Одесса ұлттық университетi, Одесса, Украина

Резонансты емес жағдайда осцилляциялы типтi коэффициенттi сызықты дифференциалдық теңдеулер жүйесiн үшбұрышты түрге келтiру туралы

Аннотация: Коэффициенттерi мен жиiлiктерi баяу өзгереiп, абсолюттi және бiрқалыпты жинақталатын Фурье қатарлары түрiнде өрнектелетiн сызықты бiртектi дифференциалдық теңдеулер жүйесi үшiн осы жүйенi резонансты емес жағдайда үшбұрышты түрге келтiретiн түрлендiрудiң бар болу шарттары алынған.

Түйiн сөздерсызықты дифференциалдық жүйелер, Фурье қатарлары.

С. А. Щёголев

Одесский национальный университет имени И. И. Мечникова, Украина

О приведении линейной системы дифференциальных уравнений с коэффициентами осциллирующего типа к треугольному виду в нерезонансном случае

Аннотация: Для линейной однородной дифференциальной системы, коэффициенты которой представимы в виде абсолютно и равномерно сходящихся рядов Фурье с медленно меняющимися коэффициентами и частотой, получены условия существования преобразования, приводящего эту систему к треугольному виду в нерезонансном случае.

Ключевые слова: линейные дифференциальные системы, ряды Фурье.

References

1 Perron O. Uber eine Matrixtransformation, Math. Zeitschr. 1930. V.32. P. 465–473.

2 Persidsky K.P. O kharakteristicnyh chislah differentsialnyh uravnenyi [On the characteristic numbers of the differential equations], Izv. AN KazSSR, ser. math. and mechan. 1947. № 1. P. 5–47.

3 Izobov N.A. O kanonicheskoi forme lineynoi dvumernoi differentsialnoi sistemy [On the canonical form of the linear two-dimensional differential system], Differencial’nye uravneniya [Differential equations]. 1971. V. 7. № 12. P. 2136–2142.

4 Кostin A.V. Ustoychivostj i asymptotica kvazilineynyh neavtonomnyh differentsialnyh sistem [The stability and asyptotics of the nonautonomous differential systems] (Odessa, OGU, 1984, 95 p.).

5 Shchogolev S.A. Dejaki zadachi teorii kolyvanj dlja differentsialnyh sistem, yaki mistyatj povilno zminni parametry [The some problem of the theory of oscillations for the differential systems, containing slowly varying parameters], The thesis for obtaining the scientific degree of Doctor of physical and mathematical sciencies. Kyiv, 2012. 290 p.

6 Kostin A.V., Shchogolev S.A. Ob ustoychivosti kolebaniy, predstavimyh ryadami Furye s medlenno menya- juchimisya parametravi [On the Stability of Oscillations Representable by Fourier Series with Slowly Varying Parameters], Differencial’nye uravneniya [Differential equations]. 2008. V. 44. № 1. P. 45-51.

7 Мalkin I.G. Nekotorye zadachi teorii nelineynyih kolebaniy [Some problems of the theory of nonlinear oscil- lations] (Gostehizdat, Moscow, 1956, 491 p.).

8 Trenogin V.A. Funktsionalnyi analiz [Functional analysis] (Nauka, Moscow, 1980, 496 p.).

Сведения об авторах:

Щёголев С.А. – физика-математика ғылымдарының докторы, профессор, И.И. Мечников атындағы Одесса ұлттық университетi, Дворянская көш., 2, Одесса, 65026, Украина.

Shchogolev S.A.– Prof., Doctor of Phys. -Math. Sciences, Odessa I.I. Machnikov National University, Dvoryanskaya str., 2, Odessa, 65082, Ukraine.

Поступила в редакцию 17.02.2020

Л.Н. Гумилев атындағы ЕҰУ Хабаршысы. Математика. Компьютерлiк ғылымдар. Механика сериясы, 2020, Том 130, №1

Ақпарат көздері

СӘЙКЕС КЕЛЕТІН ҚҰЖАТТАР

- прекращение таких дел органами уголовного преследования способствует укры- тию преступлений, искусственному улучшению статистических

Гумилев атындағы Еуразия ұлттық университетiнiң

Нелинейная система эквивалентная динамическому частотно- импульсному модулятору с фильтром в модуляторе l –го порядка

as an autonomous power source for the pumping station of the heat supply systems Abstract: In this paper, the problem of creating the algorithm for the work of the expert system

The general solutions of Airy equation, of the second order linear ordinary differential equations with variable coefficients and coefficient e x are constructed by this

There is researched existential problem of a unique multiperiodic in all independent variables solution of a linear hyperbolic in the narrow sense system of differential equations

In this paper we will discuss the sufficient condition the belonging of functions f to the Lorentz space in terms of the Fourier-Price coefficients under conditions that

Reduciability of linear D e -system with constant on diagonal coefficients to D e -system with Jordanian matrix // International conference on differential equations and