• Ешқандай Нәтиже Табылған Жоқ

CHEMISTRY AND TECHNOLOGY

N/A
N/A
Protected

Academic year: 2022

Share "CHEMISTRY AND TECHNOLOGY "

Copied!
16
0
0

Толық мәтін

(1)

ISSN 2224-5286 (Print) ҚАЗАҚСТАН РЕСПУБЛИКАСЫ

ҰЛТТЫҚ ҒЫЛЫМ АКАДЕМИЯСЫНЫҢ Д.В. Сокольский атындағы «Жанармай, катализ және электрохимия институты» АҚ

Х А Б А Р Л А Р Ы

ИЗВЕСТИЯ

НАЦИОНАЛЬНОЙ АКАДЕМИИ НАУК РЕСПУБЛИКИ КАЗАХСТАН

АО «Институт топлива, катализа и электрохимии им. Д.В. Сокольского»

N E W S

OF THE ACADEMY OF SCIENCES OF THE REPUBLIC OF KAZAKHSTAN JSC «D.V. Sokolsky institute of fuel, catalysis and electrochemistry»

SERIES

CHEMISTRY AND TECHNOLOGY

5 (443)

SEPTEMBER – OCTOBER 2020

PUBLISHED SINCE JANUARY 1947 PUBLISHED 6 TIMES A YEAR

ALMATY, NAS RK

(2)

   

 

NAS RK is pleased to announce that News of NAS RK. Series of chemistry and technologies scientific journal has been accepted for indexing in the Emerging Sources Citation Index, a new edition of Web of Science. Content in this index is under consideration by Clarivate Analytics to be accepted in the Science Citation Index Expanded, the Social Sciences Citation Index, and the Arts & Humanities Citation Index. The quality and depth of content Web of Science offers to researchers, authors, publishers, and institutions sets it apart from other research databases. The inclusion of News of NAS RK. Series of chemistry and technologies in the Emerging Sources Citation Index demonstrates our dedication to providing the most relevant and influential content of chemical sciences to our community.

Қазақстан Республикасы Ұлттық ғылым академиясы "ҚР ҰҒА Хабарлары. Химия және технология сериясы" ғылыми журналының Web of Science-тің жаңаланған нұсқасы Emerging Sources Citation Index-те индекстелуге қабылданғанын хабарлайды. Бұл индекстелу барысында Clarivate Analytics компаниясы журналды одан әрі the Science Citation Index Expanded, the Social Sciences Citation Index және the Arts & Humanities Citation Index-ке қабылдау мәселесін қарастыруда. Webof Science зерттеушілер, авторлар, баспашылар мен мекемелерге контент тереңдігі мен сапасын ұсынады. ҚР ҰҒА Хабарлары. Химия және технология сериясы Emerging Sources Citation Index-ке енуі біздің қоғамдастық үшін ең өзекті және беделді химиялық ғылымдар бойынша контентке адалдығымызды білдіреді.

НАН РК сообщает, что научный журнал «Известия НАН РК. Серия химии и технологий» был принят для индексирования в Emerging Sources Citation Index, обновленной версии Web of Science.

Содержание в этом индексировании находится в стадии рассмотрения компанией Clarivate Analytics для дальнейшего принятия журнала в the Science Citation Index Expanded, the Social Sciences Citation Index и the Arts & Humanities Citation Index. Web of Science предлагает качество и глубину контента для исследователей, авторов, издателей и учреждений. Включение Известия НАН РК в Emerging Sources Citation Index демонстрирует нашу приверженность к наиболее актуальному и влиятельному контенту по химическим наукам для нашего сообщества.

(3)

3

Б а с р е д а к т о р ы х.ғ.д., проф., ҚР ҰҒА академигі

М.Ж. Жұрынов

Р е д а к ц и я а л қ а с ы:

Ағабеков В.Е. проф., академик (Белорус) Баешов А.Б. проф., академик (Қазақстан) Бүркітбаев М.М. проф., академик (Қазақстан) Волков С.В. проф., академик (Украина) Воротынцев М.А. проф., академик (Ресей) Газалиев А.М. проф., академик (Қазақстан)

Джусипбеков У.Ж. проф., корр.-мүшесі (Қазақстан)

Жармағамбетова А.К. проф. (Қазақстан), бас ред. орынбасары Жоробекова Ш.Ж. проф., академик (Қырғыстан)

Иткулова Ш.С. проф. (Қазақстан)

Манташян А.А. проф., академик (Армения) Пралиев К.Д. проф., академик (Қазақстан) Рахимов К.Д. проф., академик (Қазақстан) Рудик В. проф., академик (Молдова) Стрельцов Е. проф. (Белорус)

Тельтаев Б.Б. проф., академик (Қазақстан) Тодераш И. проф., академик (Молдова) Тулеуов Б.И. проф., академик (Қазақстан) Фазылов С.Д. проф., академик (Қазақстан) Фарзалиев В. проф., академик (Әзірбайжан) Халиков Д.Х. проф., академик (Тәжікстан) Шайхутдинов Е.М. проф., академик (Қазақстан)

«ҚР ҰҒА Хабарлары. Химия және технология сериясы».

ISSN 2518-1491 (Online), ISSN 2224-5286 (Print)

Меншіктенуші: «Қазақстан Республикасының Ұлттық ғылым академиясы» Республикалық қоғамдық бірлестігі (Алматы қ.).

Қазақстан Республикасының Ақпарат және қоғамдық даму министрлiгiнің Ақпарат комитетінде 29.07.2020 ж.

берілген № KZ66VPY00025419 мерзімдік басылым тіркеуіне қойылу туралы куәлік.

Тақырыптық бағыты: химия және жаңа материалдар технологиясы саласындағы басым ғылыми зерттеулерді жариялау.

Мерзімділігі: жылына 6 рет.

Тиражы: 300 дана.

Редакцияның мекенжайы: 050010, Алматы қ., Шевченко көш., 28; 219, 220 бөл.; тел.: 272-13-19; 272-13-18, http://chemistry-technology.kz/index.php/en/arhiv

© Қазақстан Республикасының Ұлттық ғылым академиясы, 2020

Редакцияның мекенжайы: 050100, Алматы қ., Қонаев к-сі, 142, «Д. В. Сокольский атындағы отын, катализ және электрохимия институты» АҚ, каб. 310, тел. 291-62-80, факс 291-57-22, e-mаil:orgcat@nursat.kz

Типографияның мекенжайы: «NurNaz GRACE», Алматы қ., Рысқұлов көш., 103.

(4)

Г л а в н ы й р е д а к т о р д.х.н., проф., академик НАН РК

М.Ж. Журинов

Р е д а к ц и о н н а я к о л л е г и я:

Агабеков В.Е. проф., академик (Беларусь) Баешов А.Б. проф., академик (Казахстан) Буркитбаев М.М. проф., академик (Казахстан) Волков С.В. проф., академик (Украина)

Воротынцев М.А. проф., академик (Россия) Газалиев А.М. проф., академик (Казахстан) Джусипбеков У.Ж. проф., чл.-корр. (Казахстан) Жармагамбетова А.К. проф. (Казахстан), зам. гл. ред.

Жоробекова Ш.Ж. проф., академик (Кыргызстан) Иткулова Ш.С. проф. (Казахстан)

Манташян А.А. проф., академик (Армения) Пралиев К.Д. проф., академик (Казахстан) Рахимов К.Д. проф., академик (Казахстан) Рудик В. проф., академик (Молдова) Стрельцов Е. проф. (Беларусь)

Тельтаев Б.Б. проф., академик (Казахстан) Тодераш И. проф., академик (Молдова) Тулеуов Б.И. проф., академик (Казахстан) Фазылов С.Д. проф., академик (Казахстан) Фарзалиев В. проф., академик (Азербайджан) Халиков Д.Х. проф., академик (Таджикистан) Шайхутдинов Е.М. проф., академик (Казахстан)

«Известия НАН РК. Серия химии и технологий».

ISSN 2518-1491 (Online), ISSN 2224-5286 (Print)

Собственник: Республиканское общественное объединение «Национальная академия наук Республики Казахстан» (г. Алматы).

Свидетельство о постановке на учет периодического печатного издания в Комитете информации Министерства информации и общественного развития Республики Казахстан KZ66VPY00025419, выданное 29.07.2020 г.

Тематическая направленность: публикация приоритетных научных исследований в области химии и технологий новых материалов.

Периодичность: 6 раз в год.

Тираж: 300 экземпляров.

Адрес редакции: 050010, г. Алматы, ул. Шевченко, 28; ком. 219, 220; тел. 272-13-19; 272-13-18, http://chemistry-technology.kz/index.php/en/arhiv

© Национальная академия наук Республики Казахстан, 2020

Адрес редакции: 050100, г. Алматы, ул. Кунаева, 142, АО «Институт топлива, катализа и электрохимии им. Д.В. Сокольского», каб. 310, тел. 291-62-80, факс 291-57-22, e-mаil:orgcat@nursat.kz

Адрес типографии: «NurNaz GRACE», г. Алматы, ул. Рыскулова, 103.

(5)

5

E d i t o r i n c h i e f

doctor of chemistry, professor, academician of NAS RK М.Zh. Zhurinov

E d i t o r i a l b o a r d:

Agabekov V.Ye. prof., academician (Belarus) Bayeshov А.B. prof., academician (Kazakhstan) Burkitbayev М.М. prof., academician (Kazakhstan) Volkov S.V. prof., academician (Ukraine)

Vorotyntsev М.А. prof., academician (Russia) Gazaliyev А.М. prof., academician (Kazakhstan) Dzhusipbekov U.Zh. prof., corr. member (Kazakhstan)

Zharmagambetova А.K. prof. (Kazakhstan), deputy editor in chief Zhorobekova Sh.Zh. prof., academician (Kyrgyzstan)

Itkulova Sh.S. prof. (Kazakhstan)

Mantashyan А.А. prof., academician (Armenia) Praliyev K.D. prof., academician (Kazakhstan) Rakhimov K.D. prof., academician (Kazakhstan) Rudik V. prof., academician (Moldova)

Streltsov Ye. prof. (Belarus)

Teltaev B.B. prof., akademik (Kazahstan) Toderash I. prof., academician (Moldova) Tuleuov B.I. prof., akademik (Kazahstan) Fazylov S.D. prof., akademik (Kazahstan) Farzaliyev V. prof., academician (Azerbaijan) Khalikov D.Kh. prof., academician (Tadjikistan) Shaihutdinov E.M. prof., akademik (Kazahstan)

News of the National Academy of Sciences of the Republic of Kazakhstan. Series of chemistry and technology.

ISSN 2518-1491 (Online), ISSN 2224-5286 (Print)

Owner: RPA "National Academy of Sciences of the Republic of Kazakhstan" (Almaty).

The certificate of registration of a periodical printed publication in the Committee of information of the Ministry of Information and Social Development of the Republic of Kazakhstan No. KZ66VPY00025419, issued 29.07.2020.

Thematic scope: publication of priority research in the field of chemistry and technology of new materials Periodicity: 6 times a year.

Circulation: 300 copies.

Editorial address: 28, Shevchenko str., of. 219, 220, Almaty, 050010, tel. 272-13-19; 272-13-18, http://chemistry-technology.kz/index.php/en/arhiv

© National Academy of Sciences of the Republic of Kazakhstan, 2020

Editorial address: JSC «D.V. Sokolsky institute of fuel, catalysis and electrochemistry», 142, Kunayev str., of. 310, Almaty, 050100, tel. 291-62-80, fax 291-57-22, e-mаil: orgcat@nursat.kz

Address of printing house: «NurNaz GRACE», 103, Ryskulov str, Almaty.

(6)

N E W S

OF THE NATIONAL ACADEMY OF SCIENCES OF THE REPUBLIC OF KAZAKHSTAN SERIES CHEMISTRY AND TECHNOLOGY

ISSN 2224-5286 https://doi.org/10.32014/2020.2518-1491.77

Volume 5, Number 443 (2020), 28 – 37

UDC 691-405.8 CSCSTI 67.09.35

K.A. Bisenov, R.A. Narmanova, N.O. Appazov Korkyt Ata Kyzylorda University, Kyzylorda, Kazakhstan.

E-mail: bisenov_ka@mail.ru, roza_an@mail.ru, nurasar.82@mail.ru

PHYSICAL AND CHEMICAL STUDIES OF THE OIL SLUDGE HYDROCARBON COMPOSITION AND THE PROSPECTS FOR THEIR

USE IN THE TECHNOLOGY OF EXPANDED CLAY PRODUCTION

Abstract. The article presents the results of gas chromatographic studies of the oil sludge hydrocarbon composition, physical and chemical and heat-producing properties, which enabled to assess the potential of oil sludge as raw materials, their assortment predisposition and possible manufacturability. It has been established that the main physical and chemical characteristics of the organic part from the averaged samples of oil sludge are similar in properties to raw materials for the production of kerosene-diesel fractions. The expediency of the use of oil sludge and weakly bloating clay materials in the production technology of the popular construction material – expanded clay is substantiated. The results of experimental studies on the development of light and porous heat insulating material by granulation method are presented herein. It is shown that oil sludge from a high viscous state is transferred to a loose conglomerate with a moisture content of 12–15% by co-mixing with finely dispersed sand dune, which ensures uniform distribution when mixed with the basic mass. The peculiarities of granules burning according to a specially developed mode without preliminary drying are considered. It has been established that the addition of oil sludge increases the organic content in the mixture, thereby intensifying the process of combustion, gas generation and bloating of the ceramic body, which will positively affect the technological parameters of obtaining а product. It is found that the proposed technology allows to obtain marketable products, which can be used efficiently. At the same time, the unconditional priority is given to waste-free technologies, as the most environmentally friendly.

Key words: oil sludge, expanded clay, loess-like loam, dune sand, porous microstructure.

Introduction. In the Republic of Kazakhstan, a leading role is given to the intensive development of the oil and gas industry, since it forms the basis of the modern economy. However, the commercial development of raw hydrocarbon deposits has a technological impact on the environment objects. For example, in the process of extracting, pumping, storing oil, operating a sewage treatment plants, a significant amount of oil wastes is generated, which belong to Grades 2-3 as per toxicity level and are dangerous pollutants of surface and undergroundwaters, soil and air. At the same time, the hydrocarbon part of the oil wastes is a valuable organic raw material [1] and it can be considered as a secondary raw material resource. One type of such oil wastes is oil sludge, which is a fairly stable suspension of highly- dispersive mineral particles, organic compounds and water. This is potentially a secondary oil resource that can be brought up to the appropriate parameters and returned to the turnover.Processing of this material can ensure profitability, which will allowconducting necessary environmental protection and rehabilitation measures and preserving the financial stability of the oil production enterprise.

Solving the problem of oil sludge disposal has been the subject of many papers [2-6]. This indicates, on the one hand, the importance and relevance of this problem, and on the other hand, its complexity and the impossibility of anunambiguous solution. Therefore, it can be said that despite the diversity of existing methods, the problem of processing and using oil sludge is one of the least developedonesaccording to the technology of their disposal.

It is known that the total area of existing and promising oil and gas fields in the Republic of Kazakhstan occupies more than 60% of the country’s territory, and there are more than 200 existing oil

(7)

29

and gas fields [7-10]. On the territory of each oil-producing complex, operating for decades, there are oil sludge tanks, the number of which is growing. Their capacity at most enterprises is currently overfilled.

Therefore, the disposal of newly formed and accumulated oil sludge waste should be one of the priority areas thatstipulates a very heavy demand for the creation of modern technologies and effective methods of treatment and disposal.

Based on the above, the purpose of this paper is to study the oil sludge hydrocarbon composition and its physical and chemical, heat-producing properties; to analyze the effect of the oil sludge composition on the technological parameters of its processing as a bloating agent in the production of expanded clay.

Materials and methods. Oil sludges from the collectors of Kumkol, PetroKazakhstan Kumkol Resources JSC and Aschisay, KOR JSC based on the territory of Kyzylorda Region were taken as the objects of the study.

Oil sludges are extremely diverse in composition and are complex systems consisting of oil, water and mechanical impurities, the ratio of which varies within a very wide range [7-11].

Hydrocarbon composition of oil sludge has been studied using gas chromatograph-mass spectrometer Agilent 7890A/5975C (USA).

Gaschromatographicdetermination of the total hydrocarbon content in the oil sludge when programming the temperature of the partition column makes it possible to study in detail the composition of oil hydrocarbons.

Chromatographic conditions in analyzing hydrocarbons extracted from oil sludge are given in table 1.

Figures 1 and 2 show the chromatogram of the studied oil sludge and hydrocarbon composition is given in table 2.

Table 1 - Chromatographic conditions in analyzing hydrocarbons extracted from oil sludge Indicators Chromatographic conditions moving phase (carrier gas) helium

evaporator temperature 3500С

flow vent (Split) 30:1

column thermostat temperature:

beginning - temperature rise - end -

retention time at this temperature -

700С 40С per minute

2900С 30 min

total analysis time 85 min

ion mode of mass detector with electron impact method

Capillary chromatographic column HP-5MS

column length 30 m

inner diameter 0,25 mm

stationary phase dimethylpolysiloxane (95%)

Table 2 - Group composition of hydrocarbons by results of chromatography-mass spectrometric analysis

Hydrocarbon groups contained in oil sludge

Quantitative content, wt. % Oil sludge from the collectors

of Kumkol, PetroKazakhstan Kumkol

Resources JSC

Oil sludge from the collectors of Aschisay, KOR JSC

Paraffins 46.38 45.12

Uncondensed cycloparaffins 27.71 28.25

Condensed cycloparaffins with 2 rings 8.45 7.85

Condensed cycloparaffins with 3 rings 6.92 7.14

Benzenes 2.74 3.79

Naphthenobenzenes 0.10 0.11

Dinaphthenobenzenes 0.10 0.10

Naphthalenes 3.66 3.59

Acenaphthenes 2.96 3.21

Phenanthrenes 0.98 0.84

(8)

Figure 1 - Chromatogram of hydrocarbons extracted from the target oil sludge from the collectors of Kumkol, PetroKazakhstanKumkolResourcesJSC

Figure 2 - Chromatogram of hydrocarbons extracted from the target oil sludge from the collector of Aschisay, KOR JSC

The physical and chemical properties, i.e. density, fractional composition, mass fraction of sulfur, combustion heat, content of mechanical impurities and chloride salts of the oil sludge under study were carried out according to known methods.

The mass fraction of sulfur in the oil sludge under studyhas been determined on the device Spectroscan-Max GF2E (Russia) by measuring the intensity of the sulfur fluorescence radiation excited under irradiation of the test sample with x-rays.

The combustion heat of the test samplehas been determined on the calorimeter S2000 of the company IKA-Werke (Germany) at the clean burning of a pre-weighed mass in the calorimetric bomb in a

(9)

31

compressed oxygen environment andmeasurement of the amount of heat released at the combustion of auxiliary substances.

The results of the study of physical and chemical properties of oil sludge are given in table 3.

Studiesshow that the composition of oil sludge stored in sludge collectors for several years differs from the composition of fresh one. The high viscosity of oil sludge, high content of mechanical impurities and, most importantly, high aggregative stability are due mainly to the high content of asphaltenes, resins, paraffins and other high molecular components.

Table 3 - Properties of oil sludge

Descriptionof indexes

Indexes Oil sludge from the collectors

of Kumkol, PetroKazakhstan Kumkol

Resources JSC

Oil sludge from the collectors of Aschisay, KOR JSC

Density, kg/m3at200С 836.4 837.2

Fractional composition,% vol.

2000С 3000С 3500С

11 39 54

12 38 53

Mass fraction of sulfur, % 0.024 0.016

Combustion heat, kJ/g 44.987 45.546

Content of mechanical impurities, % 0.027 0.025

Content of chloride salts, mg / dm3 28.46 32.95

Results and discussion. It has been established that according to the physical and chemical properties, oil sludge has a dual chemical function. On the one hand, there is its affinity to light oil products such as gasoil diesel oil products, on the other hand, as per the content of metalloporphyrin complexes, carbon radicals, colloidal structureand reactive capacity, it is close to heavy oil productssuch as fuel oil.

Previouslyin the papers [12,13], the affinity of the physical and chemical properties of the hydrocarbon part of oil sludgeswith heavy oil fractions has been described, and it has been determined that they belong to the category of highly flammable and combustible materials.

It is also known from literature sources that the multicomponent composition of the oil sludge pitproducts of oil production, the presence of various chemical compounds in it create many problems during the development of processing technologies, the extraction of commercial oil from them, the removal of solid residue from oil products.

Therefore, oil sludges, which, due to their composition, are difficult to burn and do not have resource valuefrom the practical and production standpoint, are most expedient to use in the production of construction materials, namely, in the production technology of the popular construction material – expanded clay. Oil sludge will play the role of a bloating agent in the composition of expanded clay. The addition of oil sludge increases the organic content in the mixture, which intensifies the process of combustion, gas generation and bloating of the ceramic body, respectively, which will positively affect the technological parameters of obtainingаproduct.

The studies of the authors [14-18] have assessed the possibility of using local clay materials, oil- contaminated wastes for the production of expanded clay granules, methods for producing expanded clay gravel, using it as a light fillerfor various construction applications, such as thermal insulation, lightweight structural concrete, and. etc.

In this light, we have given preference in this work to the use of noncritical raw materials. When justifying the need to adjust mixtures with additives and when choosing their type, the chemical, mineralogical and granulometric compositions of the clay raw materials; availability of local resources suitable for use of materials; technical and economic effect have been taken into account. For example, as clay raw materials – weakly bloating loess-like loams, which have reserves in all regions of the Republic of Kazakhstan. The use of expensive fuel materials as a bloating and thinning agent is excluded. Instead of this, bottom oil sludge from the collectors of Aschisay, KOR JSC, based on the territory of the Kyzylorda Region is proposed.

(10)

Such methods allow obtaining marketable products, which can be usedefficiently. At the same time, the unconditional priority is given to waste-free technologies, as the most environmentally friendly.

The main properties of raw materials were studied in the papers of the authors [19,20].

Raw materials were preliminarily milled in an MShL-1P laboratory ball mill to a specific surface of 1500-2000 cm2/g. A sample of oil sludge obtained as the result oftank cleaning, was preliminarily subjected to averaging throughmechanical mixing. It is known that the oil sludge has an increased ductility and the use in such state in the compositions is difficult. Therefore, in the first stage, the oil sludge is transferred from a high viscous state to a capillary-porouscolloidal state by co-mixing with finely dispersed sand dune. This technological operation transfers the oil sludge into a loose conglomerate with a moisture content of 12-15% and provides a convenient position for subsequent technological operations, such as proportioning and uniform distribution when mixed with the basic mass. To determine the physical and mechanical properties of the raw material and the finished product, a set of standard techniques were used according to GOST 9757-90, GOST 22263-76 and GOST 530-2007. The measurement of the thermal conductivity of the samples was carried out using an ITP-MG-4 ZOND thermal conductivity meter. The examination of the surface microstructure was carried out on a JSM – 6510 LV scanning electron microscope manufactured by JEOL.

Raw material composition was prepared from the prepared components through weighing and proportioning. Specificcompositional analysis of the object under study is represented in table 4.

Table 4 - Compositional analysis of the ceramic composition Components, wt. %

Loess-like loam Conglomeratemixture “sanddune - oilsludge”

85,0 15 83,0 17 80,0 20 78,0 22 75,0 25

Ceramic body with molding water content 18-20% was prepared from the compounds under study.

Then granules with fractions of 5-10, 10-20, 20-40 mm, which were subjected to heat treatment at temperatures of 200-500ºС for 0.5-1.0 hours in a ShSP-0.5-70 drying cabinet, were manufactured.

Granules for bloating were burned in a rotary kiln of the RSR120/1000/13 brand according to a specially developed mode in the temperature range of 1150–1180°C. Bloated granules were tested for the definition of physical and mechanical properties.The results of experimental studies are presented in table 5.

Table 5 - Physical and mechanical properties of the samples under study Composition

No.

Sensitivity coefficient to drying asper the

Chizhsky rapid method, sec.

Burning temperature, 0С

Bulk density kg/m3

Cylindercrushing strength,

MPa

Thermal conductivity

W/mK 1 130

117015

520 4.5 0.12

2 145 510 4.3

3 166 480 3.9

0.08

4 180 475 3.7

5 195 450 3.5

According to the results of experimental studies, with an increase in the content of conglomerate mixture “sanddune - oilsludge” through a reduction of loam content, a decrease in the bulk density of the material from 520 to 450 kg/m3 is observed. Low indicators of bulk density are seen in compositions No. 4 and No. 5 and they are in the range of 450-475 kg/m3. Similar changes occur in respect of thermal conductivity and cylindercrushing strength. The minimum values of strength and thermal conductivity are also seenin compositions No. 4 and No. 5, while the cylindercrushing strength of these compositions is in the range of 3.5–3.7 MPa, and the thermal conductivity equals to 0.08 W/mK.

(11)

33

According to the qualification of heat insulating materials, samples of compositions No. 4 and No. 5 belong to class B (0.06–0.115 W/mK), and compositions No. 1, No. 2 and No. 3 belong to class C (0.1–

0.175 W/mK). According to GOST 9757-90, samples of compositions No. 4 and No.5 belong to P200as per strengthgrade, and samples of compositions No. 1, No. 2 and No. 3 belong to P150. Analysis of the research results shows that the granular heat insulating material obtained has the best thermal-insulating and physical and mechanical properties as compared to the properties of typicalmontmorillonite-type expanded clay.

The most important value of chemical and mineralogical content of the raw material composition in the system “loess-like loam – oil sludge – sand dune”lies in the fact that it predetermines the complex physico-chemical processof structure formationof the finished product, including phase transformations at the main stages of thermal treatment.

Figure 3 shows the research results of the surface morphology, quantitative energy-dispersive microanalysis on the elemental constituentsof the sample of composition “loess-like loam 80% - conglomerate (sand dune-oil sludge) 20%” using a scanning electron microscope.

Figure 3 - Surface morphology, quantitative energy-dispersive microanalysis on the elemental constituentsof the sample of composition “loess-like loam 80% - conglomerate (sand dune-oil sludge) 20%”

The components of the system under consideration (clay minerals, oil sludge-basedorgano-mineral part) are directly involved and interact with each other in the formation of a porous structure with the release of a gaseous phasedue to combustion of oil sludge burning, without which pore formation and bloating are impossible.

It has been established that the addition of oil sludge increases the organic content in the mixture, which intensifies the process of combustion and gas generation, increases its capability to bloat, reduces the average density of the material; at the stage of drying, it acts as a thinning agent.

Organic impurities and iron oxides, increasing the intensity of oxidation-reduction processes, increase gas generation, reducing simultaneouslythe melting point and melt viscosity. The oxides of aluminium and silicon increase the viscosity, the burning temperature and as a result the strength of expanded clay. It is established that the combustion process of oil sludge in the composition of the conglomerate mixture allows raising the temperature inside the keln and speeding up the bloatingprocess of the ceramic body, and helps to reduce energy costs for the manufacture of products by 25-30%.

Bloating and formation of the structure in the composition under study is due to the optimum combination of components determining the rheological parameters of the pyroplastic body. This is due to the special nature of the structure and composition of the crystal lattices of the minerals of the constituent components included in the group of quartz, kaolinite, hydromica, and others. Lightweight heat insulating material such as “expanded clay” and its porous microstructure is shown in figure 4.

(12)

Figure 4 - Expanded clay and its porous microstructure

Conclusions. As can be seen from the above, the studies undertaken suggest that the use of oil sludge as abloating agenthas a positive impact on the technological parameters of the ceramic bodyprocessing, makes it possible to obtain granular material – expanded clay based on weakly bloating loess-like loams.

It also solves the issues of rational use of natural resources, provides the construction industry with a competitive construction material.

К.А. Бисенов, Р.А. Нарманова, Н.О. Аппазов

Қорқыт Ата атындағы Қызылорда университеті, Қызылорда, Қазақстан МҰНАЙ ШЛАМДАРЫНЫҢ КӨМІРСУТЕК ҚҰРАМЫН

ФИЗИКА-ХИМИЯЛЫҚ ЗЕРТТЕУ ЖӘНЕ ОЛАРДЫ КЕРАМЗИТ ӨНДІРІСІ ТЕХНОЛОГИЯСЫНДА ПАЙДАЛАНУ ПЕРСПЕКТИВАЛАРЫ

Аннотация. Мақалада мұнай шламының шикізат ретіндегі ықтимал әлеуетін, ассортименттік бейімділігі мен өндірілу қабілетін бағалауға мүмкіндік тудырған мұнай шламының көмірсутек құрамын, физика- химиялық және калориялық қасиеттерін газды хроматографиялық зерттеу нәтижелері келтірілген. Мұнай шламының көмірсутек құрамын зерттеу Agilent 7890A / 5975C газды хромато-масс-спектрометр арқылы зерттелетін мұнай шламындағы күкірттің массалық бөлігі – Spectroscan-Max GF2E қондырғысы, ал калориялық мәні – IKA-Werke С2000 калориметрі арқылы жүргізілді. Араластырылып алынған сынамалар- дың органикалық бөлігінің негізгі физика-химиялық сипаттамалары қасиеттері бойынша керосинді-дизельдік фракцияларды өндіру үшін қолданылатын шикізатқа жақын екендігі анықталды. Мұнай шламын және Қазақстан Республикасының барлық өңiрiнде кездесетiн нашар ісінетін сазды топырақты белгілі құрылыс материалы – керамзитті өндіру технологиясында пайдаланудың мақсаттылығы негізделген. Эксперименттік зерттеулер арқылы жеңіл және кеуекті жылу оқшаулағыш материалды түйіршіктеу әдісімен дайындау технологиясының нәтижелері анықталған. Мұнай шламын жоғары тұтқырлықтағы күйден негізгі қоспаға қосуға ыңғайлы 12-15% ылғалдықтағы конгломератты күйге барханды құммен араластыру арқылы қол жеткізуге болатындығы көрсетілген.

Зерттелетiн құрам негiзiндегі қалыпты ылғалдылығы 18-20% болатын керамикалық қоспа дайындалды.

Осы қоспадан фракциялары 5-10, 10-20, 20-40 мм түйiршiктелген материал дайындап, арықарай 200-500ºС, 0,5-1,0 сағат көлемiнде ШСП-0,5-70 шкафында кептiрiлдi. Сонан соң түйiршiктелген материал RSR120/1000/13 маркалы айналмалы пешiнде дайындалған режимге сәйкес 1150-1180оС температура аралығында iсiру үшiн күйдiрiлдi. Iciнген түйiршiктi материалдың физика-механикалық қасиеттерi МЕМС 9757-90, 22263-76, 530-2007 кешендi cтандартты әдістемелердi пайдалану арқылы жүргiзiлдi. Үлгiлердiң жылу өткiзгiш қасиетi ИТП-МГ-4 «ЗОНД» қондырғысы арқылы анықталды, беткi қабатының микроқұры- лымы «JEOL» фирмасының JSM – 6510 LV растрлы электронды микроскопта жүргiзiлдi. Яғни, ұсынылған технологияның тағы бiр ерекшелiгi керамикалық қоспадан дайындалған түйіршіктердің, алдын ала кептірілмей-ақ, арнайы жасалған режим бойынша айналмалы пеште күйдірілу мүмкіндігі қарастырылған.

Мұнай шламын қосу шихтада органикалық зат құрамын жоғарылатады және осы арқылы керамикалық массаның жану, газ бөлу, ісіну үдерістерін белсендіре отырып, материал дайындаудың технологиялық параметрлеріне қолайлы әсер ететіндігі анықталған.

Жылусақтағыш материалдардың квалификациялық талабына сәйкес керамзиттiң ұтымды құрамы Б (0,06–0,115Вт/мК) класына жататындығы және МЕМС 9757-90 сәйкес мықтылығы бойынша П200 маркасына сәйкестiгi анықталды. Ұсынылған технология тиімді пайдалануға болатын тауарлы өнім өндіруге мүмкіндік береді. Жұмыста басымдық экологиялық тұрғыдан тиімді қалдықсыз технологияларлар дайындауға бағытталған.

(13)

35

Қарастырылған құрылымдағы компоненттер, яғни, сазды минералдар, мұнай шламының органо- минералды бөлiгi, бiр-бiрiмен әрекеттесе отырып, мұнай шламының жану барысында бөлiнген газды фаза әсерiнен қуысты құрылымды түзуге қатысады. Бұл үдеріссіз қуыс түзбейді және iсiнбейді.

Органикалық қоспалар және темiр оксидi тотығу-тотықсыздану үдерістерінің қарқындылығын арттыра отырып, газ түзiлісін жоғарылатады және балқу температурасы мен балқыма тұтқырлығын төмендетедi.

Алюминиий оксиді мен кремний тұтқырлығын және күйдiру температурасын жоғарылатады, нәтижесiнде керамзитті беріктендіруге үлес қосады. Сонымен қатар, конгломерат құрамында мұнай шламының жану үдерісі пеш iшiндегi температураны жоғарылатуға және керамикалық қоспаның ісіну жағдайын жылдам- датуға ықпал етедi. Нәтижесiнде өндiру үдерісіне жұмсалатын энергияны 25-30 % үнемдеу мүмкiндiгi туындайды.

Зерттелетiн композициядағы iciну және құрылым түзу үдерістері компоненттер құрамының ұтымдылығымен тiкелей байланысты және пиропластикалық қоспаның реологиялық параметрлерiне де әсер етедi. Бұл кварц, каолинита, гидрослюда және т.б. тобына кiретiн құрам компонент минералдары құрылымының және кристалл торының ерекшелiктерi арқылы негiзделедi.

Жүргiзiлген зерттеулер мұнай шламын iciндiру компонентi ретiнде пайдалану керамикалық қоспаны өңдеудiң технологиялық параметрлерiне оңтайлы әсер ететiндiгiн, осы арқылы нашар iсiнетiн сары топырақты саздақтан түйіршектелген материал-керамзит алуға болатындығын дәлелдедi. Сонымен қатар, табиғи ресурстарды ұтымды пайдалануға болатындығын, құрылыс индустриясын бәсекеге қабiлеттi құрылыс материалымен қамтамасыз етуге болатындығын айқындады.

Түйін сөздер: мұнай шламы, керамзит, сары топырақты саздақ, барханды құм, кеуекті микроқұрылым.

К.А. Бисенов, Р.А. Нарманова, Н.О. Аппазов

Кызылординский университет имени Коркыт Ата, Кызылорда, Казахстан ФИЗИКО-ХИМИЧЕСКИЕ ИССЛЕДОВАНИЯ УГЛЕВОДОРОДНОГО СОСТАВА

НЕФТЯНЫХ ШЛАМОВ И ПЕРСПЕКТИВЫ ИСПОЛЬЗОВАНИЯ ИХ В ТЕХНОЛОГИИ ПРОИЗВОДСТВА КЕРАМЗИТА

Аннотация. В статье приведены результаты газохроматографического исследования углеводородного состава нефтешламов, физико-химических и теплотворных свойств, которые позволили оценить возможный потенциал нефтяного шлама как сырья, их ассортиментную предрасположенность, возможную техноло- гичность. Изучение углеводородного состава нефтешлама проводили с помощью газового хромато-масс спектрометра Agilent 7890A/5975C, массовую долю серы в исследуемом нефтешламе – на приборе Спектроскан-Макс GF2E, теплоту сгорания – на калориметре С2000 фирмы IKA-Werke.

Установлено, что основные физико-химические характеристики органической части из усредненных проб нефтешламов по свойствам близки к сырью для производства керосино-дизельных фракции.

Обоснована целесообразность использования нефтяного шлама и слабовспучивающихся глинистых материалов, запасы которых имеются во всех регионах Республики Казахстан, в технологии производства популярного строительного материала – керамзит. Приведены результаты экспериментальных исследований по разработке технологии легкого и пористого теплоизоляционного материала методом гранулирования.

Показано,что нефтешлам из высоковязкого состояния переводится в сыпучий конгломерат с влажностью 12–

15% путем совместного перемешивания с тонкодисперсным барханным песком, что обеспечивает равномерность распределения при перемешивании с основной массой. Из исследуемых составов приготовлены керамическая масса с формовочной влажностью 18-20 %. Затем изготовлены гранулы с фракциями 5-10, 10-20, 20-40 мм, которые подвергались термообработке при температурах 200–500ºС в течении 0,5-1,0 часа в сушильном шкафу ШСП-0,5-70. Гранулы для вспучивания обжигались во вращающейся печи марки RSR120/1000/13 по специально разработанному режиму в интервале температур 1150-1180ºС. Вспученные гранулы подвергались испытанию по определению физико-механических свойств с использованием комплекса стандартных методик согласно ГОСТ 9757-90, ГОСТ 22263-76, ГОСТ 530-2007.

Измерение теплопроводности образцов осуществили с помощью измерителя теплопроводности ИТП-МГ-4

«ЗОНД», изучение микроструктуры поверхности проведена на растровом электронном микроскопе JSM – 6510 LV фирмы «JEOL».

Таким образом, по предлагаемой технологии рассматриваются особенности обжига гранул по специально разработанному режиму без предварительной сушки. Установлено, что добавление нефтяного шлама повышает содержание органики в шихте, тем самым интенсифицирует процесс горения, газообразования и вспучивания керамической массы, что благоприятно повлияет на технологические параметры получения материала. Согласно квалификации теплоизоляционных материалов, оптимальные

(14)

составы керамзита относятся классу Б (0,06 - 0,115 Вт/мК) и согласно ГОСТу 9757-90 относятся к марке по прочности П200.

Установлено, что предлагаемая технология позволяет получать товарную продукцию, находящую квалифицированное применение и при этом безусловный приоритет принадлежит безотходным технологиям как наиболее экологичным.

Компоненты рассматриваемой системы (глинистые минералы, органо – минеральная часть на основе нефтешлама) взаимодействуют с друг другом и участвуют непосредственно в образовании пористой структуры с выделением газообразной фазы за счет горения нефтешлама, без которой невозможно порообразование и вспучивание.

Органические примеси и оксиды железа, повышая интенсивность окислительно-восстановительных процессов, увеличивают газообразования, снижая одновременно температуру плавления и вязкость расплава.

Оксиды алюминия и кремния повышают вязкость, температуру обжига и в конечном итоге – прочность керамзита. Установлено, что процесс горения нефтешлама в составе конгломератной смеси позволяет повысить температуру внутри печи и ускорить процесс вспучивания керамической массы. А также способствует снижению энергозатрат на производство изделий на 25-30 %.

Вспучиваемость и образование структуры в исследуемой композиции обусловлено оптимальным сочетанием компонентов, определяющим реологические параметры пиропластической массы. Это обуславливается особым характером строения и состава кристаллических решеток минералов, составляющих компонентов, входящих в группу кварца, каолинита, гидрослюды и других.

Проведенные исследования позволяют утверждать, что использование нефтяных шламов в качестве вспучивающей добавки благоприятно влияет на технологические параметры переработки керамической массы, дает возможность получить гранулированный материал – керамзит на основе слабовспучивающихся лессовидных суглинков. А также решает вопросы рационального использования природных ресурсов, обеспечивает строительную индустрию конкурентоспособным строительным материалом.

Ключевые слова: нефтешлам, керамзит, лессовидный суглинок, барханный песок, пористая микроструктура.

Information about authors:

Bisenov Kylyshbai Aldabergenovich, Doctor of Technical sciences, Professor of Architecture and construction production, of the Korkyt Ata Kyzylorda University, Kyzylorda, Republic of Kazakhstan; bisenov_ka@mail.ru; https://orcid.org/0000-0002- 0167-3560.

Narmanova Roza Abdibekovna, Candidate of Technical sciences, Professor, Leading research of the laboratory of engineering profile of the Korkyt Ata Kyzylorda University, Kyzylorda, Republic of Kazakhstan; roza_an@mail.ru;

https://orcid.org/0000-0001-5672-7418.

Appazov Nurbol Orynbassaruly, Candidate of Chemical sciences, Professor, Director of Institute of Chemical research and technology of the Korkyt Ata Kyzylorda University, Kyzylorda, Republic of Kazakhstan; nurasar.82@mail.ru;

https://orcid.org/0000-0001-8765-3386.

REFERENCES

[1] Ruchkinova O. I., Karachintseva T. V. (2003). Utilization of asphalt-tar-wax deposits in production of the waterproofing cover [Article]. Neftyanoe Khozyaistvo(3), 103-105.

[2] Han D. Y., Yu W. Q., Luo,K. Y., Cao Z. B. (2019). Study on the process of oil recovery from oil sludge and tailing oil sands by blending extraction. Petroleum Science and Technology, 37(22), 2269-2274.

https://doi.org/10.1080/10916466.2019.1633347.

[3] Saikia N., Sengupta P., Gogoi P. K., Borthakur P. C. (2002). Kinetics of dehydroxylation of kaolin in presence of oil field effluent treatment plant sludge [Article]. Applied Clay Science, 22(3), 93-102, Article Pii s0169-1317(02)00130-8.

https://doi.org/10.1016/s0169-1317(02)00130-8.

[4] Abdrakhimov V. Z. (2019). Preparation of Light-Weight Refractory Based on Nonferrous Metallurgy and Oil Recovery Waste [Article]. Refractories and Industrial Ceramics, 60(2), 209-213. https://doi.org/10.1007/s11148-019-00337-7.

[5] Abdrakhimov V. Z., Semenychev V. K., Kovkov I. V., Denisov D. Y., Kulikov V. A. (2011). ECOLOGICAL AND PRACTICAL ASPECTS OF THE USE OF PETROCHEMICAL WASTE IN THE PRODUCTION OF REFRACTORY HEAT INSULATION MATERIAL BASED ON WATER GLASS [Article]. Refractories and Industrial Ceramics, 52(1), 6-8.

https://doi.org/10.1007/s11148-011-9353-6.

[6] Zhigulina A. Y., Montaev S. A., Zharylgapov S. M. (2015). Physical-mechanical properties and structure of wall ceramics with composite additives modifications. Xxiv R-S-P Seminar, Theoretical Foundation of Civil Engineering (24rsp) (Tfoce 2015), 111, 896-901. https://doi.org/10.1016/j.proeng.2015.07.165.

[7] Spankulova G. A., Sadanov A. K., Aitkeldiyeva C. A., Auezova O. N. (2016). ISOLATION AND SELECTION OF MICROORGANISMS-DESTRUCTORS OF OIL AND PETROLEUM PRODUCTS. Bulletin of the National Academy of Sciences of the Republic of Kazakhstan(3), 56-60.

[8] Zhumadillayeva A., Orazbayev B., Santeyeva S., Dyussekeyev K., Li R. Y. M., Crabbe M. J. C., Yue X. G. (2020).

Models for Oil Refinery Waste Management Using Determined and Fuzzy Conditions. Information, 11(6), Article 299.

https://doi.org/10.3390/info11060299.

(15)

37

[9] Shalbolova U., Narmanova R., Elpanova M. (2012). METHODICAL PECULIARITIES OF TARIFF SETTING AT OIL TRANSPORTATION VIA MAIN PIPELINES [Article]. Actual Problems of Economics(138), 540-555.

[10] Appazov N.O., Seitzhanov S.S., Zhunissov A.T., Narmanova, R.A. (2017) Synthesis of Cyclohexyl Isovalerate by Carbonylation of Isobutylene with Carbon Monoxide and Cyclohexanol in the Presence of Pd(PPh3)(4)-PPh3-TsOH and Its Antimicrobial Activity // Russian Journal of Organic Chemistry. 53(10): 1596-1597. ISSN: 1608-3393 (Online), ISSN: 1070- 4280. doi: 10.1134/S1070428017100189.

[11] Nadirov N.K. (2001) High viscosity oils and natural bitumens. In 5 vol. Non-traditional processing methods. V.3.

Gylym: Almaty, Kazakhstan. ISBN 9965-00-042-5 (in Russian).

[12] Egazar'yants S. V., Vinokurov V. A., Vutolkina A. V., Talanova M. Y., Frolov V. I., Karakhanov E. A. (2015). Oil Sludge Treatment Processes. Chemistry and Technology of Fuels and Oils, 51(5), 506-515. https://doi.org/10.1007/s10553-015- 0632-7.

[13] Ruchkinova O. I. (2004). Strategy and measures of ecological load on natural geosystems reduction in the sphere of oil extracting wastes managements [Article]. Neftyanoe Khozyaistvo(10), 138-140.

[14] Romanov N. I. (2004) Keramzit producing method, involves delivering clay from open pit to clay storage with moisture, where clay is charged in receiving bunker RU2235074-C1.

[15] Solntseva T. A., Kosulina T. P. (2008) Method of preparing expanded clay, involves mixing clay raw material, additive and water, granulation of obtained mixture, drying, and burning RU2397963-C2.

[16] Tamov M. C. (2003) Method of expanded clay aggregate production includes preparation of raw granules, preliminary heating, swelling up and roasting RU2211816-C1.

[17] Pioro L.S., Pioro I. (2004) Production of Expanded Clay-Aggregate for Lightweight Concrete From Non-Selfbloating Clays. Cement and Concrete composites 26, 639-643. 10.1016/S0958-9465(03)00103-3.

[18] Pankratova E. V., Fedorov V. A. (2018) Method for producing constructional keramzite gravel is that raw dried pellets are fed into a rotary kiln RU2639010-C1.

[19] Bissenov K. A., Uderbayev S. S., Saktaganova N. A. (2016). Physicochemical Analysis of Structure of Foamed Concrete with Addition of Oil Sludges. Research Journal of Pharmaceutical Biological and Chemical Sciences, 7(4), 1701-1708.

[20] Montayev S. A., Zharylgapov S. M., Bisenov K. A., Shakeshev B. T., Almagambetova M. Z. (2016). Investigating Oil Sludges and Their Application as Energy Efficient and Modifying Component in Ceramic Pastes [Article]. Research Journal of Pharmaceutical Biological and Chemical Sciences, 7(3), 2407-2415.

(16)

Publication Ethics and Publication Malpractice

in the journals of the National Academy of Sciences of the Republic of Kazakhstan For information on Ethics in publishing and Ethical guidelines for journal publication see http://www.elsevier.com/publishingethics and http://www.elsevier.com/journal-authors/ethics.

Submission of an article to the National Academy of Sciences of the Republic of Kazakhstan implies that the described work has not been published previously (except in the form of an abstract or as part of a published lecture or academic thesis or as an electronic preprint, see http://www.elsevier.com/postingpolicy), that it is not under consideration for publication elsewhere, that its publication is approved by all authors and tacitly or explicitly by the responsible authorities where the work was carried out, and that, if accepted, it will not be published elsewhere in the same form, in English or in any other language, including electronically without the written consent of the copyright- holder. In particular, translations into English of papers already published in another language are not accepted.

No other forms of scientific misconduct are allowed, such as plagiarism, falsification, fraudulent data, incorrect interpretation of other works, incorrect citations, etc. The National Academy of Sciences of the Republic of Kazakhstan follows the Code of Conduct of the Committee on Publication Ethics (COPE), and follows the COPE Flowcharts for Resolving Cases of Suspected Misconduct (http://publicationethics.org/files/u2/New_Code.pdf). To verify originality, your article may be checked by the Cross Check originality detection service http://www.elsevier.com/editors/plagdetect.

The authors are obliged to participate in peer review process and be ready to provide corrections, clarifications, retractions and apologies when needed. All authors of a paper should have significantly contributed to the research.

The reviewers should provide objective judgments and should point out relevant published works which are not yet cited. Reviewed articles should be treated confidentially. The reviewers will be chosen in such a way that there is no conflict of interests with respect to the research, the authors and/or the research funders.

The editors have complete responsibility and authority to reject or accept a paper, and they will only accept a paper when reasonably certain. They will preserve anonymity of reviewers and promote publication of corrections, clarifications, retractions and apologies when needed. The acceptance of a paper automatically implies the copyright transfer to the National Academy of Sciences of the Republic of Kazakhstan.

The Editorial Board of the National Academy of Sciences of the Republic of Kazakhstan will monitor and safeguard publishing ethics.

Правила оформления статьи для публикации в журнале смотреть на сайте:

www:nauka-nanrk.kz

http://chemistry-technology.kz/index.php/en/arhiv

 

ISSN 2518-1491 (Online), ISSN 2224-5286 (Print)

Редакторы: М. С. Ахметова, Д. С. Аленов, А. Ахметова Верстка на компьютере А.М. Кульгинбаевой

Подписано в печать 08.10. 2020.

Формат 60х881/8. Бумага офсетная. Печать – ризограф.

9,6 п.л. Тираж 300. Заказ 5.

Национальная академия наук РК

050010, Алматы, ул. Шевченко, 28, т. 272-13-18, 272-13-19

Ақпарат көздері

СӘЙКЕС КЕЛЕТІН ҚҰЖАТТАР

Приведем результаты применения метода Дельфи при экспертной оценке различных методов, технологий разложения отложений и нефтешламов и выборе

The article describes the prerequisites for accession of the Republic of Kazakhstan to the WTO, the legal issues occurred with the introduction of negotiations, and

Большой объем обработанной информа- ции показал, что технология совершенствова-.. ния спортивного мастерства квалифицирован- ных спортсменок

Исследовательская группа Евразийского центра экономико-правовых исследо- ваний представляет вниманию международных организаций обоснование о необходимости

В исключительных случаях руководитель государственного органа или органа местного самоуправления, должностное лицо либо уполномоченное на то лицо

Алашорда үкіметінің ақ казактар мен ұлттық әскери жасақтар құру жолындағы жүргізген шаралар // Алашорда қозғалысы: қазақ мемлекеттігі

теории познания и как методологии для развития современной науки и образования, для адекватного понимания и решения стратегических задач современного

The results of the experiments showed that the addition of oil sludge to the composition of cement compositions improves its physical and mechanical properties: