• Ешқандай Нәтиже Табылған Жоқ

Biomonitoring of atmospheric depositions of heavy metals and radionuclides in Ιrtysh areas of Κazakhstan

N/A
N/A
Protected

Academic year: 2022

Share "Biomonitoring of atmospheric depositions of heavy metals and radionuclides in Ιrtysh areas of Κazakhstan"

Copied!
9
0
0

Толық мәтін

(1)

ХИМИЧЕСКАЯ ТЕХНОЛОГИЯ CHEMICAL TECHNOLOGY

UDC 538.951-022.532

M.U. Nurkassimova1, A.K. Tashenov1, N.M. Omarova1, S.V. Morzhuhina2

1L.N. Gumilyov Eurasian National University, Astana, Kazakhstan;

2Dubna State University, Moscow region, Russia (E-mail: maha.bilan@mail.ru

Biomonitoring of atmospheric depositions of heavy metals and radionuclides in Ιrtysh areas of Κazakhstan

This article aims to analyze the data obtained by researching the atmospheric depositions of heavy metals and radionuclides in Irtysh areas of Kazakhstan using the method of moss-biomonitors. This method was applied for the Northeastern and Eastern parts of the Republic of Kazakhstan to assess the environmental situation in these regions. The thirty moss samples were collected in autumn and summer of 2015–2016 growth periods.

A total of 42 elements (Na, Mg, Al, Cl, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Ni, Co, Zn, As, Se, Br, Rb, Sr, Zr, Nb, Mo, Ag, Cd, Sb, Ba, La, Ce, Nd, Sm, Eu, Gd, Tb, Dy, Tm, Hf, Ta, W, Au, Th and U) were determined by the epithermal neutron activation analysis, also 14 elements (Ba, Ca, K, Mg, Na, Sr, Cr, Mn, Ni, Co, Zn, Cd, Cu, Pb) were determined by the atomic emission spectrometry with inductively coupled plasma. Multivariate sta- tistical analysis of the obtained results was used to assess the pollution sources in the studied area (Pavlodar, Ust-Kamenogorsk, and Semey regions).

Keywords: biomonitoring, heavy metals, neutron-activation analysis, atomic-emission spectrometry.

Human impact on the natural environment is immense; its power is comparable to natural geological processes and continues to grow with the rate of technological progress. It is especially significantly in the regions of large industrial centers and large cities.

Protection of environment from anthropogenic impacts involves two main activities: monitoring and control. Monitoring should ensure the organization of continuous monitoring of the environment state.

Growth of industrial production in recent decade causes an increase of human affects both components of the environment and public health. Study of atmospheric deposition of trace elements is one of the most important tasks of the environmental protection and collective efforts of scientists from many countries of the world dedicated to this area more than 40 years. Control of air quality requires primarily multi-elemental analysis of the composition of aerosol particles and determination of the concentrations of elements that are recognized as toxic to living organisms.

In Kazakhstan, due to the current socio-economic development, there are disadvantaged regions by state of the environment, which is a unique urbanistic system saturated with varied companies of very different technological orientation. The presence of large number of enterprises and high levels of radiation in Irtysh area of Kazakhstan determine the urgency of these studies.

The state of the environment and thus the health of the population largely depend on the state of the earth’s atmosphere. The atmosphere basically consists of a mixture of natural gases. The particulates pass into the air either from natural sources (soil, rocks, water bodies and living organisms) or as a result of an- thropogenic activity (industry, transport, fuel, human waste, etc.). Essentially, atmosphere is an aerosol sys- tem, where solid particles are dispersed in a mixture of gases. Among the various types of pollutants, the most hazardous are heavy metals.

Ре по зи то ри й Ка рГ У

(2)

The use of mosses as biomonitors of atmospheric depositions of trace elements were introduced in Scandinavian countries and shortly after that, usage of the mosses to assess the atmospheric deposition of metals was well proven in the UN Commission of European air [1]. Mosses have only a rudimentary root system and readily take up elements from the atmosphere. The main advantages of the method are the sim- plicity of sample collection and the relative ease of analysis compared to precipitation samples conventional- ly used to assess metal deposition. In addition, the abundance and large geographical distribution of mosses is advantageous and provides for an inexpensive and simple alternative to conventional bulk deposition anal- ysis. Thus, a high density network of sampling sites is easily achieved.

The method of moss biomonitoring of atmospheric depositions of trace elements was applied for the first time in Irtysh area to assess the environmental situation in this region.

Theoretical and experimental obtained data from the studying of air depositions of trace elements, based on the moss biomonitors, will make a significant contribution to the level of ecological safety development of Kazakhstan.

This direction seems to be new and highly topical; being that only some regions of the country were previously studied. Based on the small number of studied territories, we can talk about the need to increase the area of sampling and further work on the entire territory of the Republic of Kazakhstan for studying the state of the atmosphere.

Coordination of the European moss survey is since 2014 led by the Joint Institute for Nuclear Research in Dubna, Russian Federation. Kazakhstan joined to the United Nations Program in 2015.

The research results will be used in the preparation of the «Ecological map of the world – 2018» in the

«Kazakhstan» section.

Heavy metals are rare elements (scattered, trace), as performing certain biological functions in the body, which are accumulated in high concentrations in the environment.

The main natural source of heavy metals is magmatic and sedimentary rocks and their forming miner- als. Many elements enter into the biosphere from cosmic dust, volcanic gases, etc. The entrance of heavy metals into the environment due to industrial pollution carried out in various ways. The most important of these is the release of the processes associated with high temperatures (metallurgy, roasting, burning of fuel).

Despite the great diversity of heavy metal compounds, a set of elements in the gas-dust emissions of the fer- rous and non-ferrous metallurgy enterprises are the same type; mainly oxides represent them [2].

Heavy metals and other toxic elements emitted into the atmosphere from the industrial constructions, mostly distributed locally around the emission sources. In a real natural environment, it is usually observe a good correlation of the shape and size of areas of contamination with the configuration of the wind rose.

Around large enterprises, ferrous and nonferrous metallurgy formed strong technogenic anomalies of metals. «Characterized by the presence of the zone of maximum concentrations of heavy metals at a distance of 5 km from the source and the zones of high grade at a distance of 20–25 km. Further, the content of heavy metals decreases to the values of the local background. Local anthropogenic anomalies generate around the enterprises that process raw materials containing heavy metals and other contaminants in the form of impuri- ties. Around major thermal power plants, there are zones of contamination with metals 10–20 km in diame- ter. Any urban areas are a significant source of heavy metal pollution. High pollution found near freeways, especially lead, zinc, cadmium» [3].

Since many heavy metals tend to accumulate, the negative effects of their impact on the environment can occur slowly. Elevated concentrations of heavy metals in soils, groundwater, leading to stunted growth of trees, agricultural crops and accumulation in the human body can have a detrimental effect on the health of future generations. Hence, there is the need for monitoring atmospheric deposition of pollutant ele- ments [4].

Morphological and physiological properties of mosses along with their wide distribution make these plants very useful bio-indicators to assess the state of the environment. They have a number of advantages over other plants biomonitors (lichens, tree bark, grass, etc.): the absence or severe change in the cuticle, thin and close-set leaves, and poorly developed conducting tissue, it leads to efficient accumulation of materials carried by air, and the little direct uptake from the substrate. Mosses are the most effective at concentrating heavy metals and other trace elements from air and precipitation. Moreover, they do not have a root system and, therefore, the contribution of sources other than atmospheric deposition, in most cases is limited. Sam- ple collection is simple, the analysis of mosses is much simpler than precipitation, the period of exposure can be determined accurately [5].

Ре по зи то ри й Ка рГ У

(3)

Methods of biomonitoring were developed in the late 70s of the last century as a way to study atmos- pheric deposition of heavy metals.

The main types of biomonitoring in the European study are the mosses Hylocomium splendens and Pleurozium schreberi. These species of mosses distributed in a wide interval of temperature zones, and annu- al growth of them can be easily identified. Typically, the analysis takes a three-year growth of moss.

In research were used well-known and widely used physical and chemical methods of analysis, modern statistical and mathematical methods of calculations.

Neutron activation analysis

Determination of the elemental composition of moss samples was carried out by using instrumental neutron activation analysis (NAA).

Neutron activation analysis — analysis in which the identification and quantitative determination of el- ements in an irradiated sample is carried out selectively, using the variation of irradiation conditions — (en- ergy of bombarding particles, the exposure time), and consider the nuclear-physical properties of elements and the occurring radionuclides (particularly schema-defined decay of radionuclides, half-life).

NAA of moss samples were carried out at the PFR-2 (pulsed fast reactor) using activation of epithermal neutron along with a full range of neutrons [6, 7].

The application of NAA allows to determine up to 45 elements: Ag, Al, As, Au, Ba, Br, Ca, Ce, Cl, Co, Cr, Cs, Dy, Eu, Fe, Hf, Hg, I, In, K, La, Lu, Mg, Mn, Mo, Na, Nd, Ni, Rb, Sb, Sc, Se, Sn, Sm, Sr, Ta, Tb, Th, Ti, V, U, W, Yb, Zn, Zr [2].

Important stages in the analysis are sampling, and sample preparation.

Environmentally important element, lead cannot be identified using the method of neutron activation analysis. Due to low contents of mosses in the samples also hampered the detection of copper and mercury, therefore, to identify these elements, and compare the obtained results, it also was used the method of atomic emission spectrometry with inductively coupled plasma (AES with ICP).

Determination of metals in moss samples by atomic emission spectrometry

Atomic emission spectrometry with inductively coupled plasma is characterized by high sensitivity and ability to detect a range of metals and several nonmetals at concentrations up to 10−10 %, i.e. one particle of 1012. The method is based on using inductively coupled plasma as ion source and mass spectrometer for sep- aration and detection. ICP-MS also allows for isotopic analysis of the selected ion.

As the particles of the powdered sample fall in the Central channel of the ICP, it evaporates as the parti- cles are first dissolved therein and disintegrate into atoms. At this temperature, a significant number of the atoms of many chemical elements are ionized, while the atoms lose the least bound electron, moving in a state of the singly charged ion.

Sampling and sample preparation

In compliance with the Moss Manual 2015 (Harmens and Frontasyeva, 2015; http://icpvege- tation.ceh.ac.uk/) the three moss species Hylocomium splendens, Pleurozium schreberi, Pleurochаete squаrrosа (Fig. 1–3) were collected over the Irtysh area during the period of autumn and summer of 2015–

2016. The sampling network with numbered sampling sites is shown in Figures 4–7.

Figure 1. Hylocomium splendens Figure 2. Pleurozium schreberi

Ре по зи то ри й Ка рГ У

(4)

Figure 3. Pleurochаete squаrrosа

Figure 4. Sampling map (5 samples from Pavlodar)

Figure 5. Sampling map (5 samples from Ust-Kamenogorsk)

Ре по зи то ри й Ка рГ У

(5)

Figure 6. Sampling map (5 samples from near the river Irtysh)

Figure 7. Sampling map (15 samples from Semey)

Samples were collected in forest glades or on open heath to reduce through-fall effects from the forest canopy, and the sampling sites were located at least 300 m from main roads, 100 m from local roads, and 200 m from villages. Collected material was stored in paper bags. A separate set of disposable polyethylene gloves was used for collection of each sample.

In the laboratory the samples were cleaned from extraneous plant material and air-dried to constant weight at 30–40 ºC for 48 hours. The samples were neither washed nor homogenized. Green-brown moss shoots representing the last 3 years’ growth were subjected to analysis, as they correspond approximately to the deposition over the last 3 years. Previous experience from the use of NAA in moss biomonitoring has shown that samples of 0.3 g are sufficiently large to be used without homogenization.

The concentrations of 42 elements (Na, Mg, Al, Cl, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Ni, Co, Zn, As, Se, Br, Rb, Sr, Zr, Nb, Mo, Ag, Cd, Sb, Ba, La, Ce, Nd, Sm, Eu, Gd, Tb, Dy, Tm, Hf, Ta, W, Au, Th, and U) determined by epithermal neutron activation analysis, also 14 elements (Ba, Ca, K, Mg, Na, Sr, Cr, Mn, Ni, Co, Zn, Cd, Cu, Pb) determined by atomic emission spectrometry with inductively coupled plasma in the moss samples are reported. Multivariate statistical analysis of the obtained results was used to assess the pol- lution sources in the studied area (Pavlodar, Ust-Kamenogorsk, and Semey regions).

The descriptive statistics of the 42 analysed elements in all collected moss samples (n=30) from three dif- ferent cities are shown in Table 1. All values in Table 1–4 are given in mg·kg-1, dry weight. In Table 3 the me-

Ре по зи то ри й Ка рГ У

(6)

dian values and minimum-maximum ranges for the contents of all elements were compared with the data ob- tained from Georgia (moss survey in 2014) and the data from Norway considered as a pristine area of Europe.

A comparison of concentrations Kazakhstan-Norway showed the increased values for most of heavy metals (Cd, Sm, Ti, V, As, Mo, Mg, Al, Ca, etc) in the studied samples that apparently are due to the state of the industrial sector of Kazakhstan. The main potential sources of air pollution from the industrial sector of Irtysh area are the Aksu ferroalloy plant, aluminium factory, Kazakhstan electrolysis plant, petrochemical plant in Pavlodar region; Ul’binsk metallurgical plant, titanium-magnesium plant in Ust’-Kamenogorsk re- gion; bus factory, engineering plant, silicate plant in Semey region and etc.; also the production of steel and zinc and etc., coal mining, extraction of natural resources.

T a b l e 1 Comparison of the results of NAA for element content in mosses collected in the autumn of 2015

(all data are given in mg·kg-1)

Ele- ments

Region

Ust’-Kamenogorsk Pavlodar Semey

Arithme-

tic mean Average

median С(min.) С(max.) Arithme-

tic mean Average

median С(min.) С(max.) Arithme-

tic mean Average

median С(min.) С(max.) Nа 3437.1 3100 2700 3690 2429.2 2400 816 3710 4758 5600 1970 6920 Mg 6248 5900 5760 7170 7106 7550 4910 8220 7250 7790 5470 8480 Аl 18260 17800 16500 22000 14356 13900 5380 22300 20420 20800 15300 26500 Cl 140.04 167 36.8 255 312.2 292 45 508 50.26 48.3 42.7 60.9

K 7922 8080 7430 8370 14100 15800 10800 16900 9970 10200 7390 11800 Cа 9328 8790 7790 11700 15290 15100 9550 22800 9666 9820 8020 10700 Sc 4.208 4.09 4.010 4.52 2.924 2.88 1.37 4.1 4.36 4.73 2.56 5.42 Ti 1054.4 970 920 1250 862.6 767 300 1400 1119.8 1170 806 1460 V 25.7 24.7 22.5 30.4 19.258 18.9 7.79 29.5 25.38 24.8 21.2 30.7 Cr 21.06 20.6 19.1 23.5 19.1 20.7 12.6 23.1 20.46 21.1 12.2 26.1 Mn 351.8 219 200 907 376.4 422 228 482 250.4 252 196 313

Fe 7280 7390 5250 9290 6452 6480 3030 8680 7322 7390 5090 9820 Ni 9.968 10.5 8.88 10.8 9.36 8.88 6.87 12.6 9.682 10.8 6.34 12.1 Co 5.610 5.91 4.84 6.4 4.218 4.5 3.07 4.62 6.048 6.74 3.29 7.9 Zn 1.222 1.19 1.05 1.46 404.64 453 87.2 811 1.1226 1.18 0.933 1.27 Аs 0.130 0.126 0.15 0.17 3.37 3.54 2.51 3.81 0.12658 0.125 0.0909 0.163 Se 0.269 0.293 0.25 0.31 0.3824 0.391 0.275 0.511 0.2502 0.251 0.119 0.351 Br 3.388 4 3 4 5.124 4.64 4.08 7.52 3.286 3.54 2.28 4 Rb 28.32 28.6 26.3 30.1 22.72 23.5 12.1 29.9 33.5 38 19.1 42.3

Sr 53.46 54.7 48.1 57.5 167.22 187 88.1 238 59.98 63.9 39.1 80.1 Zr 69.36 73.3 34.9 94.5 36.6 13.5 10.7 78.4 67.38 54.3 35.3 117 Nb 1.286 1.38 0.73 1.8 4.68 5.02 1.52 7.32 1.075 0.892 0.583 2.14 Mo 0.08 0.08 0.074 0.09 0.8224 0.748 0.369 1.4 0.07438 0.068 0.0639 0.0954 Аg 0.002 0.0 0.002 0.003 0.2738 0.263 0.155 0.436 0.001696 0.00166 0.0014 0.00208

Sb 0.155 0.150 0.134 0.167 1.0604 1.155 0.604 1.77 0.1514 0.15 0.11 0.184 Cd 0.019 0.019 0.0155 0.027 0.0055 0.0055 0.0055 0.0055 0.014226 0.013 0.00973 0.0234

I 2.318 2.37 1.55 3.06 2.846 2.71 1.99 3.64 2.076 2.05 1.83 2.45 Bа 201.4 196 195 222 174.4 174 154 193 236.6 258 149 305 Cs 1.52 1.6 1.34 1.64 1.0922 1.09 0.543 1.5 1.5006 1.59 0.983 1.8 Lа 8.692 8.8 5.59 12.7 8.754 6.94 2.38 15.4 9.988 10.9 5.98 14.9 Ce 20.02 20.6 12.3 29.5 19.536 15 4.68 34.8 22.5 24.4 13.5 35.2 Nd 8.428 7.37 5.48 12.5 9.698 8.52 3.51 15.5 9.456 11.1 4.63 13.6 Sm 2.59 2.47 1.88 3.28 1.8544 1.37 0.502 3.34 2.722 2.74 1.45 3.95 Eu 0.31 0.35 0.285 0.35 0.2832 0.254 0.202 0.439 0.4074 0.427 0.194 0.591 Tb 0.2632 0.262 0.197 0.377 0.23742 0.178 0.0741 0.411 0.2812 0.311 0.163 0.406 Tm 0.15058 0.147 0.0549 0.257 0.10514 0.0794 0.033 0.179 0.16412 0.144 0.0756 0.297 Yb 0.9264 0.97 0.673 1.35 0.7324 0.659 0.262 1.38 0.9346 0.874 0.529 1.46 Hf 2.474 2.58 1.37 3.41 1.8382 1.7 0.601 3.03 2.27 1.88 1.35 3.99 Tа 0.2204 0.24 0.143 0.281 0.21022 0.212 0.0941 0.319 0.2352 0.29 0.135 0.305 W 0.00504 0.00249 0.00214 0.0159 0.6102 0.593 0.416 0.847 0.008342 0.00286 0.00208 0.0264 Аu 0.004404 0.00338 0.00179 0.00772 0.009564 0.00833 0.00681 0.0137 0.0055 0.00589 0.0012 0.0076 Hg 0.07308 0.0923 0.0271 0.0978 0.0436 0.0376 0.0206 0.097 0.06686 0.0791 0.0264 0.0996 Th 3.252 3.59 1.44 5.8 3.2456 2.2 0.768 6.03 3.132 2.63 1.53 6.01

Ре по зи то ри й Ка рГ У

(7)

T a b l e 2 The results of analysis of moss survey, which were collected in the summer of 2016

(all data are given in mg·kg-1) Ele-

ments Arithmetic

mean Average

median С(min.) С(max.) Elements Arithmetic

mean Average

median С(min.) С(max.) 2344.69 1540 312 6890 Cd 0.35 0.228 0.12 0.786 Mg 3554.23 2830 918 8370 In 0.26 0.317 0.0528 0.493

Аl 10181.53 7400 2240 26000 Sb 0.34 0.23 0.128 0.788 Si 34935.38 25400 5290 116000 I 1.18 1.01 0.305 2.56 Cl 115.30 102 50.2 238 Bа 108.89 81.4 22.5 258 K 6090 5420 1450 10900 Cs 0.81 0.595 0.391 1.5 Cа 5415.38 5510 1100 8670 Lа 4.37 2.42 0.922 11.7 Sc 2.40 1.35 0.75 6.64 Ce 9.04 5.18 1.93 23.7 Ti 511.92 358 111 1260 Nd 3.96 2.15 0.969 10 V 13.30 8.37 3.74 34.4 Sm 0.82 0.469 0.169 2.11 Cr 16.44 9.62 5.79 49.4 Eu 0.27 0.193 0.0809 0.693 Mn 155.76 117 30.8 349 Gd 0.48 0.283 0.106 1.22

Fe 4098.46 2530 1190 9580 Tb 0.13 0.0823 0.0373 0.353 Ni 6.63 4.1 1.68 19 Dy 0.71 0.451 0.221 1.9 Co 3.50 1.84 0.873 11.5 Tm 0.075 0.0557 0.0276 0.192 Zn 54.63 57.4 26.2 84.3 Yb 0.51 0.312 0.131 1.37 Se 0.30 0.344 0.152 0.409 Lu 0.073 0.0553 0.00782 0.246 Аs 2.22 1.67 0.823 4.89 Hf 0.617 0.308 0.102 1.53 Br 2.93 2.83 1.39 4.46 Tа 0.112 0.0725 0.0265 0.315 Rb 16.22 11.2 6.64 34.4 W 0.311 0.204 0.0831 0.689

Sr 62.80 47.5 14.8 150 Аu 0.0055 0.00415 0.0026 0.00969 Zr 22.22 10.1 4.56 55.7 Hg 0.42 0.402 0.295 0.576 Mo 0.35 0.223 0.0857 0.858 Th 0.975 0.554 0.253 2.44

U 0.29 0.175 0.0568 0.756

T a b l e 3 Comparison of the median values and ranges of element content in moss from Kazakhstan between data

of the moss survey Norway, Georgia and Kazakhstan (2014–2015) (all data are given in mg·kg-1) Kazakhstan moss survey

2016–2017

Kazakhstan moss survey 2014–15 (Nazarova. et al. 2015)

Georgia moss survey 2014

(Shetekauri. et al. 2015) Norway moss survey (Shetekauri. et al. 2015)

№ of

sample n=30 n=23 n=16 n=100

Element Median Range

С(min.)-С(max.) Median Range

С(min.)-С(max.) Median Range

С(min.)-С(max.) Median Range С(min.)-С(max.)

24Nа 2929 312–6920 2000 424–17100 721 268–1990 nd nd

27Mg 5329 918–8480 6060 1710–24800 4410 2720–11600 1730 940–2370

28Аl 14197 2240–26500 9510 33.8–35100 5195 2450–20800 200 67–820

38Cl 143 36.8–508 180 95.5–1270 225 140–465 nd nd

42K 8540 1450–16900 10800 3820–23200 5875 3080–9040 nd nd

49Cа 8636 1100–22800 12500 2340–24000 11800 7140–15300 2820 1680–5490

51Ti 779 111–1460 603 99–3920 547 216–2070 23.5 12.4–66.4

52V 18.7 3.74–34.4 13 1.7–56.7 11.8 6.2–54.0 0.92 0.39–5.1

56Mn 247 30.8–907 178 70.5–1260 158 70–592 256 22–750

76Аs 1.68 0.0909–4.89 1.92 0.80–8.1 0.88 0.33–2.87 0.093 0.020–0.505

82Br 3.46 1.39–7.52 4.67 2.3–31.3 4.545 2.3–9.8 4.5 1.4–20.3

99Mo 0.34 0.0639–1.4 0.69 0.21–2.03 0.35 0.24–0.77 0.135 0.065–0.70

115Cd 0.17 0.0055–0.7865 0.75 0.02–2.74 0.25 0.12–0.56 0.058 0.025–0.171

140Lа 6.9 0.922–15.4 6.4 1.35–37.3 59.28 18.8–138 17.1 5.6–50.5

153Sm 1.66 0.169–3.95 1.05 0.198–7.09 2.13 0.92–6.28 0.189 045–2.56

187W 0.25 0.00208–0.847 0.44 0.12–1.42 0.43 0.035–0.945 0.33 0.05–1.34

198Аu 0.00584 0.0012–0.0137 0.00145 0.00023–0.00441 0.13 0.06–0.27 0.127 0.009–1.23

Ре по зи то ри й Ка рГ У

(8)

The average concentrations of elements are given in Table 4 to compare two different methods: NAA and AES with ICP, and was found a correlation coefficient, which is 0,7784.

T a b l e 4 The average concentrations of elements, determined by two different methods

Elements Ba Ca Cd Co Cr K Mg Mn Na Ni Sr Zn С(average), mcg/kg by NAA 170 8909 0.3 4.9 19.9 8762 5716 247 3178 9.1 86.6 146.2 С(average), mcg/kg by AES 114 12720 2.0 5.4 33.7 5316 2971 473 1868 172.3 76.6 225.1 The performed preliminary investigation shows that the moss biomonitoring of atmospheric deposition of heavy metals is an efficient technique to study the environmental situation in the Kazakhstan. The experi- ence of this study can be successfully used in the other regions of the Kazakhstan. Also, there will be maps of the spatial distribution of elements and radionuclides in the study area, based on the statistical analysis of the data created with the use of maps of the distribution of elements, will assess potential sources of pollu- tants into the environment.

References

1 Moss survey protocol. [ER]. Access mode: http://icpvegetation.ceh.ac.uk/manuals/moss_survey.html.

2 Kuznetsov D.Yu. Cluster analysis and its application / D.Yu. Kuznetsov, T.L. Troshina // Yaroslavl pedagogical Bulletin. — 2006. — Vol. 4. — P. 103–107.

3 Frontasyeva M.V. Analytical Investigations at the IBR-2 reactor in Dubna / M.V. Frontasyeva, S.S. Pavlov // Preprint of JINR, E14–2000–177, Dubna, 2000 (submitted to the Proc. VIII Int. Seminar on Interaction of Neutrons with Nuclei (Dubna, May 17–20, 2000).

4 Steinnes E. Large Scale Multi-Element Survey of Atmospheric Deposition Using Naturally Growing Moss as Biomonitor / E. Steinnes, J.P. Rambaek, J.E. Hanssen // Chemosphere. — 1992. — Vol. 25. — P. 735–752.

5 Frontasyeva M.V. A study of atmospheric deposition of heavy metals in the southern Urals / M.V. Frontasyeva, L.I. Smirnov, E. Steinnes, S.M. Lyapunov, V.D. Cherchintsev // Preprint JINR, D-14–2002–69. — Dubna, 2002.

6 Frontasyeva M.V. Neutron activation analysis for the Life Sciences. A review / M.V. Frontasyeva // Physics of Particles and Nuclei. — 2011. — Vol. 42, No. 2. — P. 332–378. http://www.springerlink.com/content/f836723234434m27/M.V.

7 Makhambet A.Zh. First moss survey in Kazakhstan / A.Zh. Makhambet, N.M. Omarova, M.V. Frontasyeva // ICP Vegeta- tion. The 29th Task Force Meeting: Book of Abstracts. — 2016.

М.У. Нуркасимова, А.К. Ташенов, Н.М. Омарова, С.В. Моржухина

Қазақстан Республикасының Ертіс өңіріндегі ауыр металдар

мен радионуклидтердің ауадан түсулерінің биомониторингі

Мақалада мүк-биомониторлар талдауы негізінде Қазақстанның Ертіс өңіріндегі ауыр металдар мен радионуклидтердің атмосфералық түсулерін зерттеу барысында алынған мəліметтер талқыланған. Бұл əдіс Қазақстан Республикасының Солтүстік-Шығыс жəне Солтүстік аймақтарының экологиялық жағдайын бағалау мақсатында қолданылды. 30 мүк үлгілері 2015–2016 жж. өсу кезеңінің күз жəне жаз мезгілдерінде жиналған. Жалпы, 42 элемент (Na, Mg, Al, Cl, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Ni, Co, Zn, As, Se, Br, Rb, Sr, Zr, Nb, Mo, Ag, Cd, Sb, Ba, La, Ce, Nd, Sm, Eu, Gd, Tb, Dy, Tm, Hf, Ta, W, Au, Th жəне U) эпижылулық нейтрон-белсенділік талдау əдісімен, сонымен қатар 14 элемент (Ba, Ca, K, Mg, Na, Sr, Cr, Mn, Ni, Co, Zn, Cd, Cu, Pb) индуктивті байланысқан плазмалы атом-эмиссиялық спектрометрия əдісімен анықталды. Алынған нəтижелердің көпфункционалды статистикалық талдауы зерттелген территориядағы (Павлодар, Өскемен жəне Семей аймақтары) ластану көздерін бағалау мақсатында қолданылды.

Кілт сөздер: биомониторинг, ауыр металдар, нейтрон-белсенділік талдау, атом-эмиссиялық спектрометрия.

Ре по зи то ри й Ка рГ У

(9)

М.У. Нуркасимова, А.К. Ташенов, Н.М. Омарова, С.В. Моржухина

Биомониторинг воздушных выпадений тяжелых металлов и радионуклидов в Прииртышье Республики Казахстан

В статье проанализированы данные, которые были получены при изучении атмосферных выпадений тяжёлых металлов и радионуклидов в Прииртышье на основе анализа мхов-биомониторов. Данный метод был применён для оценки экологической ситуации в Северо-восточных и Восточных регионах Республики Казахстан. 30 образцов мхов были собраны осенью и летом 2015–2016 гг. растительного периода. В целом, 42 элемента (Na, Mg, Al, Cl, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Ni, Co, Zn, As, Se, Br, Rb, Sr, Zr, Nb, Mo, Ag, Cd, Sb, Ba, La, Ce, Nd, Sm, Eu, Gd, Tb, Dy, Tm, Hf, Ta, W, Au, Th и U) были опреде- лены с помощью эпитеплового нейтронно-активационного анализа, а также 14 (Ba, Ca, K, Mg, Na, Sr, Cr, Mn, Ni, Co, Zn, Cd, Cu, Pb) — с помощью атомно-эмиссионной спектрометрии с индуктивно- связанной плазмой. Многофункциональный статистический анализ полученных результатов был ис- пользован для оценки источников загрязнения на исследованной территории (регионы Павлодара, Усть-Каменогорска и Семея).

Ключевые слова: биомониторинг, тяжелые металлы, нейтронно-активационный анализ, атомно- эмиссионная спектрометрия.

Ре по зи то ри й Ка рГ У

Ақпарат көздері

СӘЙКЕС КЕЛЕТІН ҚҰЖАТТАР

Как показал, сравнительный правовой анализ гражданского процессуального зако- нодательства стран СНГ, различие по уведом- лению прокурора истца,

Обоснование выбора СУБД и пополнение базы данных по загрязнению атмосферного воздуха города

The Constitution of the Republic of Kazakhstan of August 30, 1995, and the constitutional law of the Republic of Kazakhstan on elections have undergone

В Грузии, как следует делать вывод из по- ложений Закона Грузии «О туризме и ку- рортах», приоритетным является лечебный туризм, а также сельский и

Большой объем обработанной информа- ции показал, что технология совершенствова-.. ния спортивного мастерства квалифицирован- ных спортсменок

В заключении доклада Республика Кыргы- зстан указала, что «Кыргызская Республика нуждалась в создании эффективного механиз- ма по выполнению

Анализ статистических показателей преступности на территории Республики Казахстан за период с 2010 по 2018 гг.. Для того, чтобы дать криминологическую

Там говорится, что «человек имеет основное право на свободу, равенство и благоприятные условия жизни в окружающей среде, качество которой